

Ex-Post evaluation of competition policy enforcement in energy markets: The E.ON abuse of dominance case

Veit Böckers – DICE Düsseldorf

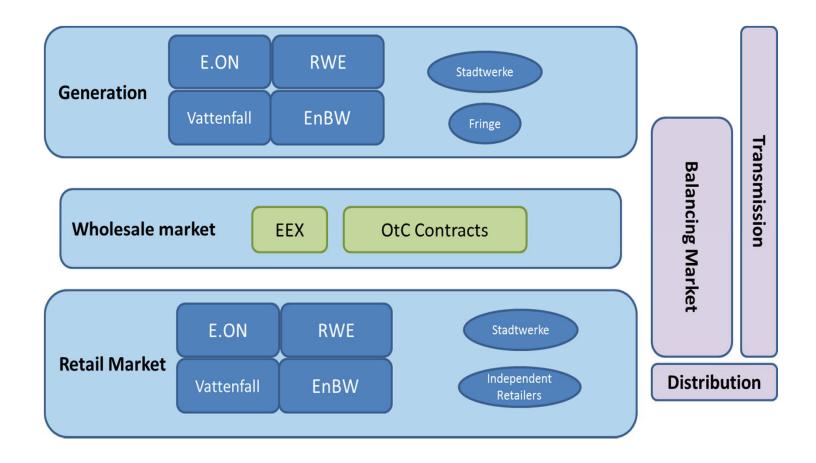
Tomaso Duso - DIW Berlin, BCCP, & DICE Düsseldorf

Florian Szücs – WU Vienna

Impact Assessment of Interventions of Competition and Consumer Authorities ACM – Amsterdam November 16, 2016

Introduction – Ex-post Evaluation of Competition Policy

- Large consensus on the welfare-enhancing properties of competition
 - Achievement of allocative, productive & dynamic efficiency → increases productivity & growth
- More limited evidence on whether competition policy is socially beneficial
 - Broad policy with many different tools affecting all markets simultaneously
- Increasing policy and academic interest
 - Ex-post (retrospective) policy evaluations are becoming integral part of competition policy enforcement (US FTC, EU DG COMP, UK CMA, OECD...)
- Today: Study for DG Competition on the ex-post evaluation of competition policy enforcement in energy markets
 - Broad econometric analysis: cross-country approach, firm level data
 - Case study I: Abuse of dominance in the Germany wholesale electricity market
 - Case study II: GDF-Suez merger focus on the Belgian gas market
- A similar study on the ex-post evaluation of competition policy enforcement in telecoms markets concluded this month (will be published in December)

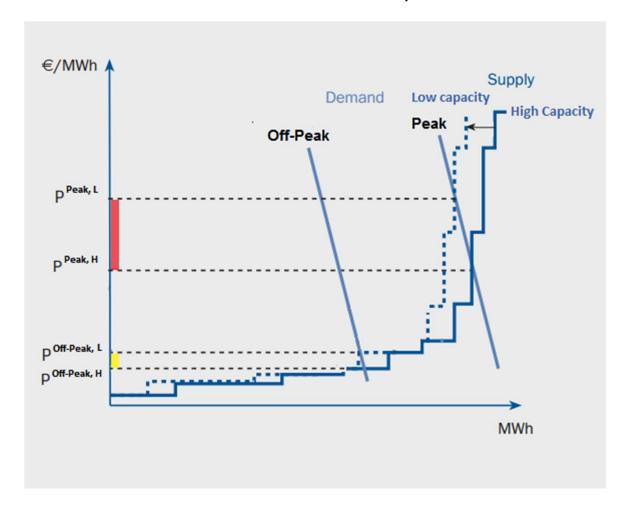

Introduction: E.ON (Alleged) Abuse of Dominance Case

- In 2008, the EU Commission alleged that E.ON withheld electricity production capacities with the aim to increasing wholesale prices → price increases and harm for consumers (exploitative abuse)
 - Case concerns the German electricity wholesale market in the 2002-2007 period
 - Individual abuse of joint dominant position (E.ON, RWE, EnBW, Vattenfall, ~70% market share)
 - E.ON committed to divest 5,000 MW of capacity to resolve concerns
- The Commission alleged that E.ON favoured its production affiliate for providing balancing services
 - E.ON committed to divest its extra-high voltage network in early 2010
- The case was settled during the investigation: It never really came to a decision and the abuse was never proved
- We cannot cleanly distinguish the effect of the two decisions but we believe the former to have a first order impact while the latter a second order effect

Introduction: Why this case?

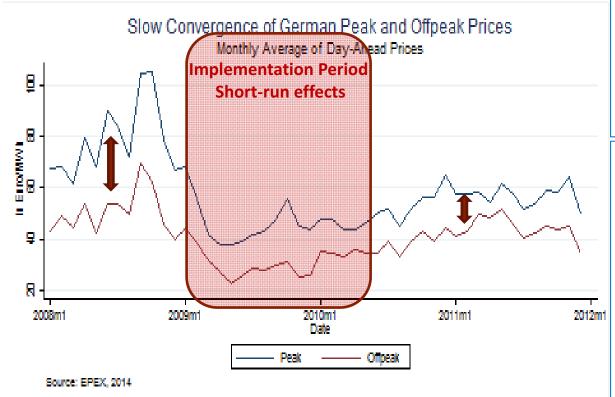
- Focus on energy markets
 - Crucial sector of the economy, high priority for the EU Commission
- Focus on an abuse case
 - Many ex-post evaluations of merger cases but no existing ex-post evaluation of an abuse case
- Focus on upstream Market
 - Generally ex-post evaluations focus on downstream/retail markets: how to deal with other markets?
- Focus on the analysis of the effect of remedies
 - Several remedies applied at different point in time
 - High-frequency of the data potentially allows identification
- Possibly better data, more expertise on the market

Introduction: The German Electricity Market



Introduction: The German Electricity Market

- Big four vertically integrated firms (E.ON, RWE, EnBW & Vattenfall) are dominant at all layers (wholesale over 75% MS, transmission/distribution, retail over 50% MS)
 - Most of energy trade (ca. 80%) done by means of long-term bilateral contracts between wholesaler and retailers but EEX is a benchmark for wholesale prices
 - Other players: 1) municipal firms 2) small independent entrants (especially in retail)
- Analysis of both upstream wholesale market and downstream retail market
 - Both analyses based on a difference-in-difference estimation strategy
 - Different identification strategies, different data
 - Key ingredients: definition of the 'counterfactual', definition of the 'before-and-after' periods
- For this presentation focus on the wholesale market analysis


Wholesale Market: Identification I

Under which circumstances do firms have market power and can abuse it?

Wholesale Market: Identification II

Difference-in-Difference approach

Treatment

Market Power is larger closer to the capacity limit, i.e. during peak times (8am-6pm) → peak prices should be more affected by the abuse

Before-and-after

Long term scenarios: after 2009 or after 2010 (excluding 2009) → diff-in-diff

Short term scenarios: one week after the implementation of each remedy → 'event study'

Wholesale Market: Empirical Framework

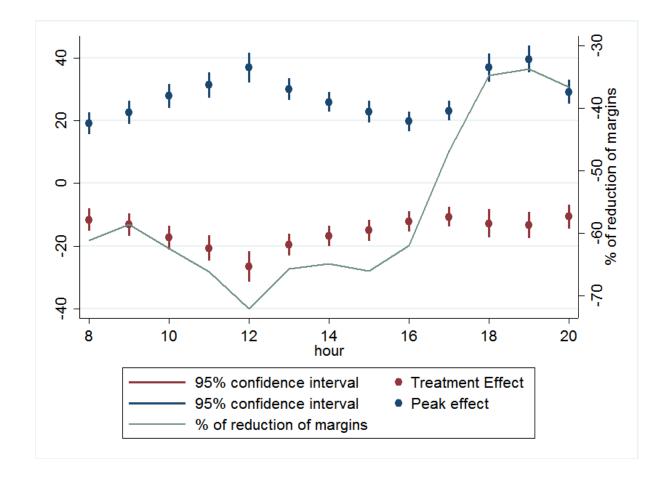
Basic model for wholesale prices (Böckers and Heimeshoff, EnJ 2014):

$$\begin{split} p_{it} &= \sum_{y=2008}^{2012} \theta_{y} Y_{y,t} + \sum_{m=1}^{11} \vartheta_{m} M_{m,t} + \sum_{d=1}^{6} \mu_{d} D_{d,t} + \rho_{1} \operatorname{temp}_{it} + \tau_{1} \operatorname{holiday}_{t} + \omega_{1} \operatorname{uranium}_{t} \\ &+ \omega_{2} \operatorname{coal}_{t} + \omega_{3} \operatorname{gas}_{t} + \omega_{4} \operatorname{oil}_{t} + \omega_{t} \operatorname{emission}_{t} + \alpha_{1} \operatorname{wind}_{it} + \alpha_{2} \operatorname{sun}_{it} \\ &+ \alpha_{3} \operatorname{cross} - \operatorname{border} \operatorname{flows}_{t} + \beta \operatorname{peak}_{i} + \gamma \operatorname{post} + \delta \operatorname{peak}_{i} \times \operatorname{post} + \epsilon_{it}. \end{split}$$

- $-\ p_{it}$ is the daily EEX power price
- Demand-side drivers (day, month, year, holiday, and temperature)
- Supply-side drivers (prices of uranium, coal, gas, oil, and price for emission certificates)
- Electricity production from renewable sources (wind, sun)
- Integration of European electricity markets (cross-border electricity flows and a dummy for the market-coupling period)
- Account for autocorrelation in the errors terms (Newey-West standard errors 7 days)
- Key variable is the interaction between post and treat
 - Coefficient (δ) measures the peak price change relative to the off-peak price change

Wholesale Market: Data

- The data come from different sources.
 - The power exchange prices are taken from the respective (national) power exchanges and come from the Platts database
 - Coal price is a combined price series of two sources (Platts and Argus McCloskey)
 - Oil price index is chosen from ICE Brent Europe (in \$/tonne),
 - Gas price reference is that of ENDEX/TTF,
 - Emission certificates price is the weighted emission certificate price from the EEX.,
 - Electricity consumption is retrieved from the ENTSO-E country reports,
 - Several other sources for the other control variables (Deutscher Wetterdienst, website of the network operators, Solarwirtschaft.de, ...)


Wholesale Market: Main Results

	Post 2010	Post 2009	Short-Run	Single Div.
Peak	30.84***	31.03***	19.68***	19.83***
	(1.89)	(1.79)	(1.00)	(1.03)
$Peak \times Post$	-15.37***	-14.58***	-3.22**	
	(1.65)	(1.66)	(1.54)	
Peak × Div. 1				-2.48
				(2.65)
Peak × Div. 2				-4.47***
				(1.62)
Peak × Div. 3				0.18
				(2.28)
Peak × Div. 4				3.57
				(3.25)
Peak × Div. 5				-2.40**
				(1.19)
Peak × Div. 6				-9.55***
				(2.16)
Peak × Div. 7				-4.37***
				(1.31)
Peak × Div. 8				-6.54***
				(2.27)
Constant	40.32***	38.38***	46.66***	47.89***
	(7.46)	(6.33)	(7.92)	(8.24)
Cumulative post effect	-7.09***	-11.85***	-20.06***	-20.84***
	(2.74)	(4.30)	(4.97)	(5.62)
N	2190	2916	2890	2916
Adj. R ²	0.7800	0.7900	0.7626	0.7625

The dependent variable is the daily average peak or off-peak price at the EEX power exchange. We control for input prices (gas, oil, coal, uranium, and emission), day, month, and year dummies, solar and wind energy production, temperature, cross-border capacities, market coupling, as well as holydays. Newey-West standard errors with maximum lag order of autocorrelation equal to seven days are reported in parentheses. The symbols ***, **, * represent significance at the 15, %%, 10% levels respectively.

Wholesale Market: Additional results – Non-monotonic effect

Using different peak Hours: Non-monotonic effect

Wholesale Market: Additional Results – Placebo analysis

- To support our identification strategy, we run our regressions on 'placebo' countries
 - Spanish wholesale electricity market was not integrated to Germany and should not be impacted by the E.ON abuse
 - Small significant convergence (3 EUR MWh) between peak and off-peak prices after 2009 or 2010
 - No significant convergence in both short-term specifications
 - II. French wholesale electricity market more closely integrated to Germany and could be impacted by the E.ON abuse
 - Significant convergence (15 EUR MWh) between peak and off-peak prices after 2009 but it disappear in 2010 \rightarrow 2009 very special year for France
 - No significant convergence in both short-term specifications. But few significant effects around some divestitures

Wholesale Market: Robustness checks for Inferences

- Autocorrelation in the residuals is one of the main econometric issues for inferences.
 - We use a Newey-West estimator with 7 periods (days) lags
- We run robustness checks
 - Lower order autocorrelation: Newey-West estimator with lower order autocorrelation lag (two days) → no difference
 - Bootstrapped standard errors (1000 iterations) → results minimally affected, loose some significance
 - Weekly data: We use weekly averages for the peak and off-peak prices → qualitative and quantitative results are the same

Wholesale Market: Conclusions

- Our findings are consistent with the view that Commission's decision, by affecting competition in the wholesale market had the effect of reducing prices
 - Strong and statistically significant convergence between peak and off-peak prices in the short-run as well as in the long-run
 - The size of the effects is economically relevant varying between 3 to 15 EUR MWh
 - The effect is non-linear and larger the higher the market power (the higher the peak price)
 - Placebo regressions based on Spanish and French data support our identification strategy
 - We run several checks to test the robustness of our inference

CAVEATS

- 1. We cannot separately identify the extent of the alleged abuse and the effect of the decision
- We cannot (cleanly) identify the effect of the different remedies though we have some evidence
- 3. We cannot exclude that other relevant events which affected the functioning of markets might also be driver of the observed results
 - Evidence of no type II error but we cannot say much on type I errors