Monitor groothandelsmarkten gas en elektriciteit

2009

Energiekamer
Nederlandse Mededingingsautoriteit
Den Haag, november 2009

Projectteam:
Marcel Vermeulen
Simon Bremer
Vera Barfi Masihi
Managementsamenvatting

Groothandelsmarkt gas
Toegang tot de infrastructuur (capaciteit) en vrije verhandelbaarheid van gas (commodity) is essentieel voor marktwerking op de groothandelsmarkt gas. In 2008 hebben zich hier enkele positieve ontwikkelingen voorgedaan. Kwaliteitsconversie is in grotere hoeveelheden voorradig, niet gebruikte transportcapaciteit kan alsnog beschikbaar komen en de handelsvolumes op de handelshub TTF nemen toe.

- Vanaf medio 2008 zijn de capaciteitsrestricties bij kwaliteitsconversie minder knellend. De afgelopen jaren overtrof de vraag naar kwaliteitsconversie de capaciteit van de conversiestations. GTS is in juli 2008 met Gasterra overeengekomen door gaswaps, het ruilen van hoogcalorisch tegen laagcalorisch gas, aan de marktvraag naar kwaliteitsconversie te voldoen.
- In 2008 zijn twee initiatieven genomen om niet gebruikte capaciteit weer beschikbaar te maken. Hoewel transportcapaciteit volledig geboekt is op first come first serve basis ligt het werkelijke gebruik van de capaciteit veelal lager. Februari 2008 zijn TS O’s GTS en BEB een platform gestart voor dagvooruit afschakelbare capaciteit. Mei 2008 zijn gasbeurzen APX en Trac-X begonnen met secundaire handel van firm dagvooruit capaciteit.
- In 2008 zijn de verhandelde en geleverde volumes op TTF sterk gegroeid na jaren van bescheiden groei. Het verhandeld volume is toegenomen van 290 tot 636 TWh en het geleverde volume van 78 tot 196 TWh. Het aandeel van TTF in de totale Nederlandse gasstromen stijgt van 8% naar 18%.

Kortom, in 2008 is er meer capaciteit voor de markt beschikbaar en is er meer commodity op de handelshub geleverd. Dit is zonder meer gunstig voor de marktwerking. Maar gelet op het totale plaatje is de winst gering. De groothandelsmarkt voor gas kent nog altijd belangrijke knelpunten. Leveranciers ervaren de beperkte toegang tot flexibiliteit als belemmerend en het productaanbod op TTF is niet toereikend om in hun behoeften te voorzien.

- Om zelfstandig activiteiten op de gasmarkt te ontplooien is toegang tot flexibiliteit cruciaal. Seizoensflexibiliteit is nodig om in de hoge gasvraag tijdens de winter te voorzien en korte termijn flexibiliteit om variaties in verbruik tussen de dagen en binnen een dag op te vangen. Deze flexibiliteit kan geleverd worden door de ondergrondse opslagen die in 2008 voor het eerst goed benut zijn. De toegang voor derden is echter dusdanig beperkt dat leveranciers hiermee niet hun behoefte aan flexibiliteit kunnen dekken waardoor ze afhankelijk blijven van Gasterra.
- Gasterra levert dit gas voornamelijk af op de fysieke exitpunten. Leveranciers kunnen dit gas geen andere bestemming geven, niet opnieuw verhandelen dan wel combineren met gas uit andere bronnen. Dit belemmert leveranciers met portfoliomanagement hun gas sourcing te optimaliseren. De virtuele handelsplaats TTF is geen alternatief vanwege het beperkte aanbod van flexibiliteit. Volumes laagcalorisch gas, benodigd voor seizoensflexibiliteit, zijn in omvang nog altijd beperkt en hoewel sprake is van meer liquide day-ahead handel, is er bijna geen handel in within-day producten.

De markt zit in die zin redelijk op slot. Maatregelen zijn al ingezet om knelpunten weg te nemen. Dit zijn het nieuwe marktmodel en het marktconform balanceringsregime. Beiden komen voort uit de Gasbrief van de Minister en het achterliggende TTF advies van NMa. Maar deze maatregelen werken met name voorwaardenschappend. Marktwerking vergt dat alle actoren op de gasmarkt zich er ook aan committeren. Een bijzondere verantwoordelijkheid ligt bij Gasterra als exclusieve vermarkter van het Groningengas. Marktwerking impliceert immers dat gas in de gewenste perioden en hoeveelheden te verkrijgen is op TTF.
Groothandelsmarkt elektriciteit

Marktwerking op de groothandelsmarkt voor elektriciteit is vergeleken met die van gas een stuk verder gevorderd. Het balanceersysteem van TenneT heeft als inspiratie gediend voor het aankomend balanceringsregime op de gasmarkt en zowel dagvooruit capaciteit op de grens als dagvooruit commodity op de beurs is al jarenlang verkrijgbaar. Positieve ontwikkelingen in 2008 zijn de invoering van netting en intra-day capaciteit op de grenzen en een toename in liquiditeit op de APX.

- In september 2008 hebben TSO’s TenneT, RWE, Eon en Elia het principe van netting ingevoerd op de grenzen met Duitsland en België. De beschikbare dagvooruit capaciteit voor import en export neemt hierdoor toe met de omvang van de nominaties van jaar- en maandcapaciteit in tegenovergestelde richting.

- Op de landgrensoverschrijdende verbindingen met Duitsland kunnen marktpartijen jaar-, maand- en dagvooruit capaciteit reserveren. Het was echter niet mogelijk in te spelen op wijzigende (markt)omstandigheden op de dag van uitvoering. Sinds december 2008 wordt overgebleven capaciteit na de (expliciete) dagveiling op intra-day basis beschikbaar gesteld aan de markt. Op de grens met België, waar al sprake is van impliciete dagveiling, is dit per mei 2009 mogelijk.

- Op de elektriciteitsbeurs APX is het volume van de dagvooruit handel met meer dan 4 TWh toegenomen tot 25 TWh. De afnemende prijsgevoeligheid voor extra vraag duidt op een verdere verbetering in de liquiditeit. 50 MW extra vraag zou resulteren in een prijsstijging van 0,5% (was 0,9%) en 500 MW extra vraag in een prijsstijging van 6,1% (was 14,3%).

Invoering van netting en intra-day handel op de grenzen betekent een beter gebruik van grenscapaciteit. Met name marktkoppeling (het gezamenlijk veilen van dagvooruit capaciteit en commodity op de beurs) met Duitsland en later ook Noorwegen zal bijdragen aan verdere optimalisatie. De beperkte beschikbaarheid van interconnectie capaciteit voor de markt blijft echter een knelpunt evenals de geconcentreerde marktstructuur van de groothandelsmarkt elektriciteit.

- Alle maatregelen gericht op betere benutting van de beschikbare grenscapaciteit (marktkoppeling, netting, intra-day) zijn zonder meer zinvol. Gelet op de aanwezige fysieke capaciteit op de grenzen zou echter meer capaciteit beschikbaar moeten zijn voor de markt. Blijkbaar is sprake van dermate ernstige congestie op (buitenlandse) netwerken dat TenneT de beschikbare capaciteit op de Nederlandse grenzen terugbrengt van 7000 MW tot 4600 MW.

- Indicatoren van marktstructuur duiden erop dat marktspeker(s) vaker onmisbaar zijn en dat de mate waarin ze onmisbaar zijn toeneemt. Gemeten aan de dekkingsgraad voor nieuwe investeringen is de winstgeveendheid van elektriciteitsproductie ook toegenomen. Blijkbaar compenseren de winsten op inframarginal capaciteit de negatieve mark-up van de marginale centrale in voldoende mate. Het is een gunstig teken dat deze winsten zich vertalen naar grootschalige plannen voor nieuwbouw.

Inhoudsopgave

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Hoofdstuknaam</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inleiding</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Gas</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Inleiding</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Infrastructuur</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Inleiding</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Transportcapaciteit</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Kwaliteitsconversiecapaciteit</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Opslagcapaciteit</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Conclusie</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Mededinging</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Inleiding</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Marktstructuur</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Marktuikomsten</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Conclusie</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Handelsplaatsen</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Inleiding</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2</td>
<td>TTF volumes</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Liquiditeit op TTF</td>
<td>34</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Conclusie</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Tot slot</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>Elektriciteit</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Inleiding</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Infrastructuur</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Inleiding</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Interconnectiecapaciteit</td>
<td>42</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Conclusie</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Mededinging</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Inleiding</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Marktstructuur</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Marktuikomsten</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Conclusie</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Handelsplaatsen</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Inleiding</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Handel op de spotmarkt APX</td>
<td>60</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Handel in OTC termijncontracten</td>
<td>63</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Conclusie</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Tot slot</td>
<td>67</td>
</tr>
</tbody>
</table>
Lijst van figuren

Gas

Figuur 1: Gasbalans : vraag naar gas (dagtotalen), 2008 ... 14
Figuur 2: Gasbalans : aanbod van gas (dagtotalen), 2008 .. 14
Figuur 3: TTF prijs ten opzichte van gasprijzen op buitenlandse hubs (uitgedrukt als ratio hub/ TTF) ... 16
Figuur 4: beschikbare, geboekte en gebruikte importcapaciteit H-gas .. 16
Figuur 5: benuttingsgraad importcapaciteit H-gas NL-DU gerelateerd aan prijsverschil TTF-BEB, 2008 ... 17
Figuur 6: Beschikbare, geboekte en gebruikte exportcapaciteit H-gas ... 18
Figuur 7: benuttingsgraad exportcapaciteit H-gas NL-UK gerelateerd aan prijsverschil TTF-NBP, 2008 ... 19
Figuur 8: Beschikbare, geboekte en gebruikte exportcapaciteit L-gas .. 20
Figuur 9: gebruik stikstof (load duration curve) .. 21
Figuur 10: gebruik stikstof (maandgemiddelden) ... 21
Figuur 11: onttrekking en injectie gasopslag (load duration curve) .. 22
Figuur 12: onttrekking en injectie gasopslag (maandgemiddelden) .. 23
Figuur 13: capaciteit overige spelers ten opzichte van de marktvraag (pivotal supplier analyse) 25
Figuur 14: residual supply index (frequentie diagram) .. 26
Figuur 15: TTF prijzen (frequentie diagram) .. 28
Figuur 16: gasprijs, olieprijs en load ... 29
Figuur 17: relatie tussen marktstructuur (RSI) en marktuittkomsten (TTF prijs) 29
Figuur 18: verhandelde en geleverde volumes op TTF (maandtotalen) .. 31
Figuur 19: churn op TTF (ratio verhandeld/geleverd) en aandeel van TTF in gasstromen 32
Figuur 20: TTF volumes (geleverd) onverdeeld naar H-gas en L-gas .. 33
Figuur 21: TTF volumes (verhandeld) onverdeeld naar within- day, prompt en curve 33
Figuur 22: TTF volumes (verhandeld) onverdeeld naar beurzen, OTC markt en bilaterale contracten 34
Figuur 23: volatiliteit van prijzen op TTF (maandcontracten) .. 35
Figuur 24: bied-laat spreiding op TTF (maandcontracten) ... 36
Figuur 25: resilience op TTF ... 37
Figuur 26: diepte van de markt op TTF ... 37
Figuur 27: internationale vergelijking volatiliteit prijzen (maandcontracten) 38
Figuur 28: internationale vergelijking bied-laat spreiding (maandcontracten) 38

Elektriciteit

Figuur 29: APX prijs ten opzichte van prijzen buitenlandse elektriciteitsbeurzen (uitgedrukt als ratio beurs/ APX) ... 43
Figuur 30: benutting exportcapaciteit België (daggemiddelde MWh) ... 43
Figuur 31: benutting exportcapaciteit België (daggemiddelde MWh) .. 44
Figuur 32: benuttingsgraad interconnectie NL-BE gerelateerd aan prijsverschil APX-Belpex, 2008 45
Figuur 33: benutting exportcapaciteit Duitsland (daggemiddelde MWh) .. 45
Figuur 34: benutting exportcapaciteit Duitsland (daggemiddelde MWh) .. 46
Figuur 35: benuttingsgraad interconnectie NL-DU gerelateerd aan prijsverschil APX-EEX, 2008 47
Figuur 36: benutting exportcapaciteit Noorwegen (daggemiddelde MWh) .. 47
Figuur 37: benutting exportcapaciteit Noorwegen (daggemiddelde MWh) .. 48
Figuur 38: benuttingsgraad interconnectie NL-NO gerelateerd aan prijsverschil APX-NordPool Spot, 2008 ... 49
Figuur 39: aantal onmisbare spelers, piekuren (daggemiddelde)
Figuur 40: RSI op sectorniveau, piekuren (frequentie)
Figuur 41: ontwikkeling brandstofprijzen
Figuur 42: merit order sector (gemiddeld per jaar)
Figuur 43: elekriciteitsprijzen APX en OTC, piekuren
Figuur 44: mark-up, piekuren (frequentie)
Figuur 45: relatie tussen marktstructuur (RSI-sector) en marktuitkomsten (mark-up), piekuren
Figuur 46: dekkingsgraad (verhouding winst tot investeringskosten)
Figuur 47: verhandeld volume op APX (jaartalen)
Figuur 48: verhandelde volumes op APX, EEX en Powernext (maandtalen)
Figuur 49: prijsgevoeligheid APX bij 50 MW extra vraag
Figuur 50: prijsgevoeligheid APX bij 500 MW extra vraag
Figuur 51: elekriciteitsprijzen APX dagvooruit en TenneT onbalans, piekuren
Figuur 52: verhandeld en gedeeld volume op Endex (jaartalen)
Figuur 53: volatiliteit prijzen OTC maandcontracten, piekuren
Figuur 54: bied-laat spreiding OTC maandcontracten, piekuren
Figuur 55: internationale vergelijking volatiliteit prijzen OTC maandcontracten, piekuren
Figuur 56: internationale vergelijking bied-laatspreiding OTC maandcontracten, piekuren
Lijst van tabellen

Gas

- Tabel 1: benuttingsgraad en volledige benutting (% uren) importcapaciteit H-gas ... 17
- Tabel 2: benuttingsgraad en volledige benutting (% uren) exportcapaciteit H-gas .. 18
- Tabel 3: benuttingsgraad en volledige benutting (% uren) exportcapaciteit L-gas .. 20
- Tabel 4: benuttingsgraad gasopslagen (gemiddeld) .. 23
- Tabel 5: marktstructuur indicatoren PSI (% uren) en RSI ... 26
- Tabel 6: mening van shippers over hoogte van toetredingsdrempels tot de gasmarkt... 27
- Tabel 7: mening van shippers over mate van transparantie op de gasmarkt... 27
- Tabel 8: resultaten regressie analyse TTF dagvooruit, 2006-2008 .. 30
- Tabel 9: verhandelde en geleverde volumes op TTF (jaartotalen) ... 32
- Tabel 10: churn op TTF (ratio verhandeld/geleverd) en aandeel van TTF in gasstromen.. 32
- Tabel 11: volatiliteit van prijzen op TTF voor dag, maand, jaarcontracten (% jaargemiddelden)......................... 35
- Tabel 12: bied-laat spreiding op TTF voor dag, maand, jaarcontracten (% jaargemiddelden)............................... 36

Elektriciteit

- Tabel 13: benuttingsgraad en volledige benutting (% uren) importcapaciteit België .. 44
- Tabel 14: benuttingsgraad en volledige benutting (% uren) exportcapaciteit België .. 44
- Tabel 15: benuttingsgraad en volledige benutting (% uren) importcapaciteit Duitsland 45
- Tabel 16: benuttingsgraad en volledige benutting (% uren) exportcapaciteit Duitsland 46
- Tabel 17: benuttingsgraad en volledige benutting (% uren) importcapaciteit Noorwegen 47
- Tabel 18: benuttingsgraad en volledige benutting (% uren) exportcapaciteit Noorwegen 48
- Tabel 19: efficiëntie grensoverschrijdende handel Nederland met omringende landen ... 49
- Tabel 20: gemeenschappelijk prijspatroon (PCA) Nederland en omringende landen .. 50
- Tabel 21: impact invoering trilaterale marktkoppeling (NL, FR, DU regio) volgens PCA .. 50
- Tabel 22: impact ingebruikname NorNed kabel (NL, NO, DU, FR regio) volgens PCA ... 50
- Tabel 23: marktstructuur indicatoren PSI (% uren) en RSI sectorniveau, piekuren .. 53
- Tabel 24: mening van handelaren over mate van transparantie op de elektriciteitsmarkt 53
- Tabel 25: dispatch inefficiency op sectorniveau en op portfolio niveau, piekuren 2008 56
- Tabel 26: resultaten regressie analyse mark-up, 2006-2008 ... 58
- Tabel 27: marktuitkomsten indicatoren mark-up (piekuren) en dekkingsgraad (jaargemiddelden) 59
- Tabel 28: verhandeld volume op APX (jaartotalen) ... 60
- Tabel 29: prijsgroei隐蔽 (% stijging) APX bij 50 MW en 500 MW extra vraag ... 62
- Tabel 30: verhandeld en gecleard volume op Endex (jaartotalen) ... 64
- Tabel 31: volatiliteit prijzen OTC maand, kwartaal, jaarcontracten (% jaargemiddelden) 64
- Tabel 32: bied-laat spreiding OTC maand, kwartaal, jaarcontracten (% jaargemiddelden) 65
1 Inleiding

De Nederlandse Mededingingsautoriteit (NMa) heeft als wettelijke taak om de groothandelsmarkten voor elektriciteit en gas nauwlettend te volgen. Het doel van deze monitoring is te bepalen of de werking van deze markten wordt belemmerd en welke maatregelen de NMa en de Minister van Economische Zaken kunnen nemen om deze belemmeringen te heffen. Vanwege de samenhang tussen de elektriciteits- en gasmarkt, de grote overeenkomsten in de wijze van analyseren en de wens om efficiëntievoordelen te realiseren bij de monitoring, zijn evenals vorig jaar de analyses van de gashmarkt en die van de elektriciteitsmarkt samengevoegd in één rapport.

Methode van aanpak

De monitoring van de werking van de groothandelsmarkten bestaat, globaal gezegd, uit het vergelijken van waargenomen ontwikkelingen met maatstaven. Het gaat hierbij om drie hoofdaspecten, te weten:

- toegang tot en beschikbaarheid van infrastructuur;
- mate van concurrentie tussen spelers;
- mate van liquiditeit van handelsplaatsen.

Toegang tot essentiële infrastructuur, zoals het hoogspanningsnet en het hogedruknet, vormt de basisvoorwaarde voor de totstandkoming van competitieve energiemarkten en de ontwikkeling van liquide handelsplaatsen. De infrastructuur moet in principe voor alle marktpartijen toegankelijk zijn tegen voorwaarden die zowel voldoende rekening houden met de noodzakelijke vergoeding van investeringskosten als er voor zorgen dat de beslissingen tot gebruik van de infrastructuur zo efficiënt mogelijk plaats vinden. Competitieve markten kenmerken zich verder door een structuur waarin marktpartijen niet in staat zijn marktmacht uit te oefenen en de prijzen bepaald worden door de marginale kosten van het aanbod. De mate van liquiditeit in de markt bepaalt tegen welke transactiekosten contracten tot stand komen en daarmee het vertrouwen van partijen in de markt.

Om te bepalen in hoeverre de feitelijke marktsituatie de ideale situatie heeft bereikt, gebruiken we verschillende maatstaven, afhankelijk van de beschikbaarheid van gegevens en/of mogelijkheid om deze maatstaven te berekenen. De maatstaven die we toepassen zijn:

- ontwikkeling in de tijd, zowel binnen het jaar zelf als in vergelijking met het voorgaande jaar;
- situatie in andere landen, in het bijzonder landen waarmee Nederland in verbinding staat, zoals Duitsland, België en Verenigd Koninkrijk;
- afwijking ten opzichte van kritische waarden van specifieke kengetallen, zoals bij de RSI, markup en dekkingsgraad van investeringen;\(^1\)

\(^1\) De Elektriciteitswet 1998 (artikel 5, lid3), stelt het volgende: “De raad van bestuur van de mededingingsautoriteit houdt bij de uitoefening van de hem op grond van deze wet en de Gaswet toegekende taken en bevoegdheden rekening met het belang van de bevordering van een elektriciteitsmarkt en een gasmarkt die niet-discriminatoir en transparant zijn en gekenmerkt worden door daadwerkelijke mededinging en een doeltreffende marktwerving. Hij volgt nauwlettend in welke mate de elektriciteitsmarkt en de gasmarkt aan de […] genoemde belangen voldoen […]”

Als de RSI kleiner dan 1 is, dan heeft een groeps de mogelijkheid de marktuitkomsten te beïnvloeden. Als de markup positief is, dan is dat een teken van (tijdelijke) allocatieve inefficiëntie. Als de dekkingsgraad van investeringen groter dan 1 is, dan is dat een teken van (tijdelijke) overwinsten.\(^2\)

\(^2\) Als de RSI kleiner dan 1 is, dan heeft een groeps de mogelijkheid de marktuitkomsten te beïnvloeden. Als de markup positief is, dan is dat een teken van (tijdelijke) allocatieve inefficiëntie. Als de dekkingsgraad van investeringen groter dan 1 is, dan is dat een teken van (tijdelijke) overwinsten.
Verzameling van gegevens en informatie

Op basis van bovenstaande globale uitgangspunten bestaat de monitoring van de groothandelmarkten uit het verzamelen en analyseren van gegevens en informatie over infrastructuur, mededinging en handelsplaatsen. De eerdergenoemde wettelijke basis geeft de NMa de bevoegdheid om de benodigde gegevens bij marktpartijen op te vragen. Deze dataverzoeken hebben deels een verplicht karakter; voor het overige is de deelname van marktpartijen aan de informatieverzameling op vrijwillige basis. Naast verzoeken aan marktpartijen is informatie verzameld uit externe bronnen, zoals van Platts en TSO Auction (zie tabel).

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Doelgroep</th>
<th>Grootheden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasmarkt</td>
<td>GTS</td>
<td>Beschikbare, geboekte en gebruikte capaciteit per uur per onderdeel van infrastructuur</td>
</tr>
<tr>
<td>Gasopslag beheerders</td>
<td></td>
<td>Kenmerken en gebruik van gasopslag</td>
</tr>
<tr>
<td>Shippers</td>
<td></td>
<td>Enquête over visie op liquiditeit van handelsplaatsen en transparantie in de markt</td>
</tr>
<tr>
<td>APX / ENDEX</td>
<td></td>
<td>Prijzen, volumes en marktanalyses</td>
</tr>
<tr>
<td>Marktplaatsen (extern)</td>
<td></td>
<td>Prijzen en volumes</td>
</tr>
<tr>
<td>Elektriciteitsmarkt</td>
<td>TenneT</td>
<td>Beschikbare, toegekende en genomineerde interconnectiecapaciteit per uur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beschikbare productiecapaciteit centrales per uur</td>
</tr>
<tr>
<td>Producenten</td>
<td></td>
<td>Productie per centrale per uur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenmerken van centrales</td>
</tr>
<tr>
<td>Handelaren</td>
<td></td>
<td>Enquête over visie op liquiditeit van handelsplaatsen en transparantie in de markt</td>
</tr>
<tr>
<td>APX / ENDEX</td>
<td></td>
<td>Prijzen, volumes en marktanalyses</td>
</tr>
<tr>
<td>Marktplaatsen (extern)</td>
<td></td>
<td>Prijzen en volumes</td>
</tr>
</tbody>
</table>

In aanvulling op de analyse van verzamelde gegevens zijn twee klankbord sessies gehouden met de sector om de analyses en de bevindingen te bespreken.

Opbouw van de monitor

Van de afzonderlijke ontwikkelingen in de gasmarkt en de elektriciteitsmarkt wordt respectievelijk verslag gedaan in de hoofdstukken 2 en 3. De indeling van deze hoofdstukken is identiek. Eerst wordt de infrastructuur belicht, daarna de mededinging en tot slot handelsplaatsen.
2 Gas

2.1 Inleiding

Een goedwerkende groothandelsmarkt gas is een must om leveranciers op de retailmarkt met elkaar te laten concurreren om de gunst van de consument.

Met de inkoop van gas moeten leveranciers zich zien te onderscheiden van hun concurrenten. Als er op de groothandelsmarkt weinig keus is en alle leveranciers onder dezelfde voorwaarden contracten afsluiten met de aanbieder(s) van gas dan komt concurrentie op de retailmarkt niet van de grond. Scherpe prijsstelling op de retailmarkt is pas te verwachten als leveranciers ook echt werk kunnen maken van hun inkoopstrategie. Dit vereist een competitieve groothandelsmarkt waarop meerdere aanbieders met een breed palet aan gasproducten en gerelateerde diensten actief zijn. Dan zal ook de Nederlandse energieverbruiker gaan profiteren van marktwerking op de energiemarkten.

Hoe ziet een goedwerkende groothandelsmarkt gas eruit? Omdat de gasvraag in grote mate temperatuur afhankelijk is en ook pieken kent in het dagelijks verbruik moeten leveranciers aan eindverbruikers in staat zijn hun gasaanbod te variëren. Een belangrijke voorwaarde daarom is dat leveranciers gas uit verschillende bronnen kunnen combineren tot een verbruiksprofiel. Gas is te verkrijgen op de (nationale) handelshub, via import uit het buitenland en door gebruik te maken van ondergrondse opslag. Op de handelshub kopen leveranciers blokken gas in van verschillende looptijden (jaar, maand, dag..) om het profiel vorm te geven. Door transportcapaciteit op de grenzen voor lange of korte periode te reserveren is gas ook uit het buitenland te halen. Om de seizoensvraag of andere variaties in verbruik op te vangen worden daarnaast ondergrondse gasopslagen ingezet. Leveranciers transporteren dit gas in verbruiksprofiel van het hogedruknet naar de aansluitingen.

De realiteit op de groothandelsmarkt geeft echter een ander beeld te zien. Het Groningenveld voorziet in belangrijke mate in de behoefte aan seizoens- en korte termijn flexibiliteit (zie ook box gasbalans). Het recht om dit Groningengas te vermarkten is exclusief toegekend aan handelsbedrijf Gasterra. Gasterra levert het meeste gas direct vanuit de bron op de aansluiting. Deze gaslevering komt overeen met het verbruiksprofiel waarbij Gasterra veelal de balansverantwoordelijkheid overneemt. De unieke swingcapaciteit van het Groningen productieveld maakt deze flexibele levering mogelijk. Door directe levering op de aansluiting is het gas uit Groningen echter niet (her)verhandelbaar en ook niet te combineren met gas uit bijvoorbeeld ondergrondse opslag. Dit belemmert leveranciers om een eigen inkoopstrategie te ontwikkelen op de groothandelsmarkt gas.

Pas als marktspelers zelf in voldoende mate beschikken over flexibiliteit en gas in alle soorten en maten verkrijgbaar is op handelsplaats TTF kan sprake zijn van marktwerking. Om tot een goedwerkende groothandelsmarkt gas te komen zijn daarom toegang tot infrastructuur, gezonde concurrentie en een liquide handelshub van cruciaal belang. De marktmonitor meet de mate van vooruitgang op deze aspecten en identificeert eventuele knelpunten die verdere ontwikkeling in de weg staan.
Box: gasbalans

Figuur 1: Gasbalans: vraag naar gas (dagtotalen), 2008

Figuur 2: Gasbalans: aanbod van gas (dagtotalen), 2008
Bovenstaande box illustreert de variatie in vraag en aanbod van gas door het jaar heen. Op de
groothandelsmarkt voor gas zijn producenten, handelsbedrijven, industriële grootverbruikers en leveranciers
aan eindverbruikers actief. De behoefte aan gas bij de vragende partijen loopt uiteen. Industriële
grootverbruikers met een 24uurs productieproces nemen een constante stroom gas af, terwijl leveranciers
aan huishoudens met pieken in het gasverbruik te maken hebben (figuur 1). In het aanbod van gas bestaan
ook verschillen tussen producenten. Uit de kleine velden wordt gas vrijwel continue op maximaal vermogen
geproduceerd, terwijl de gasproductie uit het Groningenveld sterk varieert in de tijd (figuur 2). Beide figuren
illustreren de rol van ondergrondse gasopslagen. In de winter leveren deze flexibiliteit, in de zomer worden
opslagen weer bijgevuld.

2.2 *Infrastructuur*

2.2.1 *Inleiding*

Toegang tot infrastructuur is essentieel om actief te worden op de groothandelsmarkt gas. Shippers hebben
behoefte aan transport-, kwaliteitsconversie- en opslagcapaciteit. Bij efficiënte grensoverschrijdende handel
bepalen prijsignalen de stroomrichting van het gas en wordt de capaciteit volledig benut als er
prijsschommelingen zijn tussen landen. Dit vraagt om een optimale toewijzing van de beschikbare
transportcapaciteit aan shippers. Naast transportcapaciteit hebben shippers ook kwaliteitsconversie en
flexibiliteit nodig. Hoogcalorisch gas uit import moet worden omgezet naar laagcalorische gaskwaliteit voor
levering aan kleinverbruikers. Vanwege het fluctuerende afnamepatroon van met name huishoudens moet
aan het vlakke importprofiel ook flexibiliteit worden toegevoegd. Een optimale inzet van conversiestations en
gasopslagen draagt in belangrijke mate bij aan een goedfunctionerende gasmarkt.

In het hoofdstuk infrastructuur analyseren we achtereenvolgens de benutting van transportcapaciteit,
kwaliteitsconversie capaciteit en opslagcapaciteit.

2.2.2 *Transportcapaciteit*

Nederland importeert hoogcalorisch gas op grenspunten met Duitsland en België waarvoor GTS
transportcapaciteit met een omvang van ruim 38 GW firm aan de markt beschikbaar stelt. Nederland
exporteert hoogcalorisch gas op grenspunten met Duitsland, België en het Verenigd Koninkrijk. Hiervoor stelt
GTS een capaciteit van ruim 66 GW firm beschikbaar aan de markt. Voor export van laagcalorisch gas op
grenspunten met Duitsland en België is ruim 87 GW beschikbaar.

Het gebruik van deze verbindingen laten we zien met figuren waarin de beschikbare (available), geboekte
(booked) en gebruikte (used) capaciteit weergegeven is. Hoe intensief grenscapaciteit wordt gebruikt lezen
we af aan de indicator benuttingsgraad. Indien op enig uur het gebruik gelijk is aan de beschikbare capaciteit
spreek we van volledige benutting. In hoeverre speke is van optimale benutting van de grenscapaciteit laten
we zien aan de hand van figuren waarin het maximale gebruik op een dag (hoogste benuttingsgraad) is
afgezet tegen het prijsverschil op de gashubs.
De prijzen op de gashubs in Nederland en omringende landen lijken in 2008 dichter bij elkaar te komen. In vergelijking met eerdere jaren zijn grote afwijkingen van kortere duur en liggen prijzen op de ene hub niet structureel boven of onder die van een ander land.

Figuur 3: TTF prijs ten opzichte van gasprijzen op buitenlandse hubs (uitgedrukt als ratio hub/TTF)

In het vervolg van deze paragraaf komen achtereenvolgens de benutting van de importcapaciteit (hoogcalorisch gas) en van de exportcapaciteit (hoog- en laagcalorisch gas) aan bod.³

Benutting importcapaciteit
Figuur 4: beschikbare, geboekte en gebruikte importcapaciteit H-gas

³ In de figuren wordt een aggregatie over de landen gepresenteerd, in de tabellen worden de grenspunten per land samengenomen.
De toename in beschikbare importcapaciteit is gerealiseerd op de grens met Duitsland. Mede hierdoor ligt de benuttingsgraad in 2008 aanmerkelijk lager, maar ook in fysieke zin is er minder gas vanuit het buitenland naar Nederland gestroomd. Waar importstromen in 2007 regelmatig op de capaciteitsgrenzen stuiten (fysieke congestie), is dit in 2008 niet langer het geval. Geen enkel uur was sprake van volledige benutting.

Tabel 1: benuttingsgraad en volledige benutting (% uren) importcapaciteit H-gas

<table>
<thead>
<tr>
<th>Importcapaciteit H-gas</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duitsland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>78%</td>
<td>84%</td>
<td>70%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>België</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>62%</td>
<td>41%</td>
<td>20%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>30%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Evenals in het voorgaande jaar is de grenscapaciteit met Duitsland voor 2008 volledig geboekt. GTS wijst de capaciteit toe volgens first come, first serve principe. Boekingen vinden plaats op firm basis zolang de capaciteit toelaat. Daarna worden boekingen op afschakelbare basis vastgelegd. In 2008 was nog afschakelbare capaciteit beschikbaar. In de volgende figuur is zichtbaar dat de importcapaciteit beter benut wordt naarmate het gas op TTF (dagvooruit) duurder is dan op de Duitse gashub BEB. De beschikbare importcapaciteit wordt echter op geen moment volledig benut, ook niet bij aanzienlijke prijsverschillen. Shippers zien zich hier geconfronteerd met een uitruil: zekere arbitragewinsten (transportkosten zijn immers al voldaan bij boeken capaciteit) tegenover meer risico’s bij balanceren omdat er minder flexibiliteitsopties overblijven.

Figuur 5: benuttingsgraad importcapaciteit H-gas NL-DU gerelateerd aan prijsverschil TTF-BEB, 2008
Daarnaast blijven deze arbitramogelijkheden onbenut omdat spelers die er gebruik van willen maken niet de benodigde dagvooruit capaciteit kunnen verkrijgen (contractuele congestie). In 2008 zijn twee initiatieven gestart om korte termijn capaciteit voor de markt beschikbaar te maken. In februari zijn de TSO’s GTS en BEB gestart met een platform (EUCABO) waarop shippers dagvooruit afschakelbare capaciteit kunnen boeken. In mei zijn de gasbeurzen APX en Trac-X begonnen met secundaire handel van firm dagvooruit capaciteit. Het EUCABO platform wordt in beperkte mate gebruikt, op de secundaire markt is met name aan Duitse kant sprake van enige activiteit.

Benut ting export capa cit et

Figuur 6: Beschikbare, geboekte en gebruikte exportcapaciteit H-gas

Export van hoogcalorisch gas kent alleen op de grens met België enige mate van fysieke congestie, 4% van de tijd waren deze grenspunten volledig benut.

Tabel 2: benuttingsgraad en volledige benutting (% uren) exportcapaciteit H-gas

<table>
<thead>
<tr>
<th>exportcapaciteit H-gas</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duitsland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>41%</td>
<td>44%</td>
<td>48%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>België</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>42%</td>
<td>59%</td>
<td>58%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>7%</td>
<td>4%</td>
</tr>
<tr>
<td>Verenigd Koninkrijk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>85%</td>
<td>51%</td>
<td>68%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

4 Toelichting bij de grafiek: bij het ontbreken van gegevens over BBL boekingen over 2006 en 2007 is aangenomen dat deze gelijk zijn aan de beschikbare capaciteit (zoals het geval was in 2008). Daarnaast valt de toename in beschikbare capaciteit met ingebruikname van BBL (december 2006) samen met een afname in beschikbare capaciteit op de Duitse en Belgische grens.
De capaciteit van de BBL (Balgzand Bacton line) exportverbinding met het Verenigd Koninkrijk is voor het hele jaar volledig geboekt. Op enkele momenten zat het gebruik tegen de capaciteitsgrenzen aan, maar veelal was er ruimte over om meer gas te transporteren. Hoewel de BBL verbinding intensiever wordt gebruikt in de dagen dat TTF prijzen lager zijn dan op NBP, blijven mogelijkheden om te arbitreren tussen de markten onbenut. Dit duidt op contractuele congestie op de verbinding met het Verenigd Koninkrijk.

Figuur 7: benuttingsgraad exportcapaciteit H-gas NL-UK gerelateerd aan prijsverschil TTF-NBP, 2008

Export van laagcalorisch gas kent in nog veel sterkere mate een seizoenspatroon vergeleken met hoogcalorisch gas. Nederland is in die zin een exporteur van flexibiliteit (figuur 7). Op de grens met België is de capaciteit volledig geboekt, op de grens met Duitsland is er capaciteit vrij beschikbaar. Fysieke congestie doet zich niet voor bij de export van laagcalorisch gas. De benuttingsgraad blijft voor beide grenzen ook stabiel.
Figuur 8: beschikbare, geboekte en gebruikte exportcapaciteit L-gas

![Graph showing available, booked, and used export capacity for L-gas]

Tabel 3: benuttingsgraad en volledige benutting (% uren) exportcapaciteit L-gas

<table>
<thead>
<tr>
<th>Exportcapaciteit L-gas</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duitsland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>31%</td>
<td>32%</td>
<td>32%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>België</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benuttingsgraad</td>
<td>47%</td>
<td>48%</td>
<td>45%</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

2.2.3 Kwaliteitsconversiecapaciteit

Met kwaliteitsconversie kunnen shippers de gaskwaliteit omzetten. Kwaliteitsconversie is essentieel omdat eindverbrukkers een specifieke gaskwaliteit afnemen. Conversiemethoden zijn het mengen van H-gas met L-gas of het toevoegen van stikstof aan H-gas. GTS beschikt op verschillende plaatsen in het hogedruknetwerk over mengstations en stations voor injectie van stikstof. De capaciteit aan kwaliteitsconversie bedroeg in 2008 gemiddeld ruim 34 miljoen KCE's (kwaliteitsconversie eenheden) waarvan 90% door stikstofbinding en 10% door menging.
Het gebruik van stikstof om gas te converteren van hoogcalorisch naar laagcalorische kwaliteit is in 2008 duidelijk afgenomen. Dit wil niet zeggen dat de behoefte aan kwaliteitsconversie vermindert. De afname van stikstofbinding komt voort uit het toenemende gebruik van gas swaps. GTS en Gasterra zijn medio 2008 overeengekomen door het ruilen van hoogcalorisch tegen laagcalorisch gas meer kwaliteitsconversie voor de markt beschikbaar te maken. Kwaliteitsconversie werd jarenlang door shippers als knelpunt op de gasmarkt ervaren. De beschikbare capaciteit was lang te voren volgeboekt op first come first serve basis terwijl de werkelijke benutting vaak veel ruimte liet. De grotere hoeveelheden aan beschikbare kwaliteitsconversie hebben het mogelijk gemaakt de boeking per juli 2009 af te schaffen.
2.2.4 Opslagcapaciteit

Met gasopslag kunnen shippers flexibiliteit verkrijgen. Flexibiliteit in het gasaanbod is essentieel omdat de vraag naar gas niet constant is. Het gasverbruik varieert tussen de seizoenen maar ook van dag tot dag met pieken binnen de dag. In Nederland zijn twee gasopslagen voor seizoensflexibiliteit operationeel met een werkvolume rond 45 TWh en een uitzendcapaciteit rond 45 GW. De opslagcapaciteit van Grijpskerk (H-gas) kent 11% derdentoegang, de rest van de capaciteit van Grijpskerk en alle opslagcapaciteit van Norg (L-gas) is gereserveerd door operator NAM. Deze gereserveerde capaciteit is uitsluitend toegedicht aan Gasterra. Aan korte termijn flexibiliteit is ruim 11 TWh werkvolume en bijna 29 GW uitzendcapaciteit aangesloten op het Nederlandse hogedruknnet (peak shaver LNG Maasvlakte niet inbegrepen). Operators Essent, Nuon en RWE gebruiken deze voor eigen doeleinden zonder derden toegang, operator TAQA van de opslag in Alkmaar stelt 7% beschikbaar voor derden toegang.

Figuur 11: onttrekking en injectie gasopslag (load duration curve)

Bovenstaande figuur laat middels een load duration curve zien hoe de capaciteit van gasopslagen aangesloten op het GTS hogedruknnet is benut. Duidelijk zichtbaar is de hogere benutting van de onttrekkingscapaciteit in 2008 vergeleken met voorgaande jaren. Kijken we vervolgens naar het jaarpatroon in onderstaande figuur dan komt de seizoenscyclus veel duidelijker naar voren.
De volgende tabel geeft de gemiddelde benuttingsgraad van de onttrekkingscapaciteit en van het werkvolume voor de afgelopen jaren. Bij de berekening voor de onttrekkingscapaciteit is rekening gehouden met de afname in capaciteit door dalende druk naarmate meer gas onttrokken wordt. Bij de berekening voor het werkvolume is eenvoudigweg het verschil tussen de grootste en kleinste hoeveelheid aanwezig gas gedeeld op het (theoretisch) werkvolume van de gasopslagen.

<table>
<thead>
<tr>
<th>Tabel 4: benuttingsgraad gasopslagen (gemiddeld)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Onttrekkingscapaciteit</td>
</tr>
<tr>
<td>Werkvolume</td>
</tr>
</tbody>
</table>

De benutting van gasopslagen ligt in 2008 duidelijk hoger vergeleken met voorgaande jaren. Een cyclus van legen en weer vullen lijkt zich nu voor het eerst te hebben voorgedaan bij de seizoensopslagen. Overigens wil dit niet zeggen dat de gasopslagen nu optimaal benut worden, technisch gezien is bij de meeste opslagen meer dan één cyclus per jaar haalbaar. Onduidelijk is waarm de gasopslagen in voorgaande jaren niet op eenzelfde manier gebruikt zijn. De betere benutting ten spijt blijft het problematisch dat opslagcapaciteit voor seizoensflexibiliteit grotendeels aan één partij is toegedeeld.
2.2.5 Conclusie

Fysieke gasstromen tussen landen worden in beperkte mate gedreven door prijssignalen. Weliswaar is de benutting van de grenscapaciteit beter bij grotere prijsverschillen, maar ook dan blijft een deel van de capaciteit ongebruikt. Marktspelers boeken capaciteit ruim met het oog op flexibiliteit waardoor first come, first serve toewijzing niet resulteert in efficiënte grensoverschrijdende handel. Gunstige ontwikkelingen in 2008 zijn de beschikbaarheid van dagvooruit capaciteit op afschakelbare basis en de totstandkoming van een secundaire markt voor dagvooruit firm capaciteit. Belangrijke winst is met name geboekt op het gebied van kwaliteitsconversie. Door gebruik te maken van gas swaps stelt de capaciteit van conversiestations geen maximum meer aan hoeveelheden te converteren gas. Dit heeft het mogelijk gemaakt om het vooraf boeken van kwaliteitsconversie per juli 2009 af te schaffen. Verder is opslagcapaciteit in 2008 aanmerkelijk beter benut vergeleken met voorgaande jaren. Het patroon van injectie en onttrekking benadert veel meer de seizoenscyclus die je op voorhand mag verwachten. Vanwege de beperkte derden toegang tot ondergrondse opslagen verandert dit niets aan de afhankelijkheid die leveranciers ervaren bij (seizoen)flexibiliteit.

2.3 Mededinging

2.3.1 Inleiding

Gezonde concurrentie vraagt om marktpartijen die aan elkaar gewaagd zijn. Op een gelijk speelveld hebben spelers onder zelfde voorwaarden toegang tot alle relevante infrastructuur. Bij een onevenwichtige verdeling van capaciteit is het in perioden met hoge marktvraag niet ondenkbaar dat een (of meer) spelers onmisbaar zijn. De gasmarkt kenmerkt zich immers door een sterk variërende omvang van de vraag. Huishoudens hebben een duidelijk dagpatroon in gasafname met pieken in de ochtend en de avond. Maar belangrijker nog is de seizoenscomponent in de gasvraag. Op winterdagen is deze een veelvoud van de vraag in de zomer. Als deze onmisbaarheid een substantieel deel van de capaciteit betreft kan dit nadelige consequenties hebben voor de marktuitkomsten.

In het hoofdstuk mededinging kijken we achtereenvolgens naar de marktstructuur en naar de marktuitkomsten. Bekeken wordt of spelers onmisbaar zijn op de markt en welke invloed dit heeft op de marktuitkomsten. Gebrek aan transparantie en eventuele toetredingsdrempels houden de markt mogelijk geconcentreerd. De monitor inventariseert daarom ook de meningen van shippers omtrent deze aspecten van de marktstructuur.
2.3.2 Marktstructuur

Concentratie in het aanbod
Om inzicht in de marktstructuur te verkrijgen wordt in economische studies van energiemarkten vaak de pivotal supplier analyse gebruikt. Deze analyse laat zien hoe vaak een (dominante) speler onmisbaar is op de markt. Dit geeft meer inzicht in een mogelijke machtspositie dan traditionele indicatoren als marktaandeel of HHI (Hirschman-Herfindahl index). Een hoog marktaandeel (of hoge HHI) hoeft niet op een machtspositie te duiden als de andere spelers voldoende capaciteit hebben om de totale vraag te bedienen. De speler met het hoge marktaandeel zal dan waarschijnlijk niet in staat zijn de prijs op te drijven. Indien op enig moment de gezamenlijke capaciteit van de andere spelers ontoereikend is voor de totale marktvraag dan is de betreffende speler in dat uur onmisbaar (een pivotal supplier).

De pivotal supplier index wordt uitgedrukt in het percentage uren dat een (of meer) spelers onmisbaar zijn. Om deze index te berekenen zijn de totale capaciteit waarover andere spelers dan Gasterra kunnen beschikken en de load per uur voor het betreffende jaar benodigd. Bij capaciteit worden productievelden, gasopslagen, import, afschakelbare vraag en linepack meegenomen. Onderstaande figuur geeft dit grafisch weer. Links van het punt waar de vraag (load duration curve) en de capaciteitslijn elkaar snijden zijn deze spelers niet in staat om aan de gehele vraag te voldoen. In 2008 is dit in 5411 uur het geval, ofwel 62% van de tijd.

Figuur 13: capaciteit overige spelers ten opzichte van de marktvraag (pivotal supplier analyse)

Ook is uit de grafiek af te lezen dat de mate van onmisbaarheid sterk varieert. Op piekuren is de vraag naar gas meer dan het dubbele van de capaciteit waar andere spelers over beschikken. Deze mate van onmisbaarheid kan worden gemeten met de indicator residual supply index (RSI). De RSI is gedefinieerd als: gezamenlijke capaciteit andere spelers / totale load. Deze indicator is nauw verwant aan de pivotal supplier analyse, een RSI waarde beneden de één betekent onmisbaar. Naarmate een speler meer onmisbaar is (een lagere RSI), zal deze meer vrijheid in de prijsstelling ervaren. Gemiddeld over 2008 komt de residual supply index uit op 0,88.

Onderstaand frequentie diagram van de RSI laat zien dat de seizoenen een duidelijke impact hebben op de marktstructuur. Gedurende de winter komt de RSI waarde dichtbij 0,5, terwijl in de zomer deze ruim boven de 1 ligt. Onmisbaarheid is met name in de winter dus een issue.

Figuur 14: residual supply index (frequentie diagram)

<table>
<thead>
<tr>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>pivotal supplier index</td>
<td>60%</td>
<td>65%</td>
</tr>
<tr>
<td>residual supply index</td>
<td>0,87</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Tranparantie en toetredingsbelemmeringen
Bij de indicatoren voor marktstructuur tekent zich weinig verandering af de laatste jaren (tabel 5). Belangrijke verschuivingen in capaciteit tussen spelers hebben zich ook niet voorgedaan. Uit de shippers enquete blijkt dat zij de schaarste aan transportcapaciteit en opslagcapaciteit als belangrijke toetredingsbelemmering zien. Beschikbare kwaliteitsconversie wordt nu veel minder als drempel gezien (tabel 6).
Tabel 6: mening van shippers over hoogte van toetredingsdrempels tot de gasmarkt

Naast schaarste aan capaciteit kan een weinig transparante markt shippers van verdere marktparticipatie weerhouden. Uit de shippersenquete blijkt dat informatie over beschikbare opslagcapaciteit en over de prijs van flexibiliteit onvoldoende transparant is. De kwaliteit en tijdigheid van stuurinformatie wordt ronduít als slecht beoordeeld (tabel 7). Gelet op de aanstaande invoering van een nieuw balanceringsregime is dit zorgelijk te noemen. Meerdere shippers noemen kwaliteit en tijdigheid van stuurinformatie als belangrijkste verbeterpunt op de gasmarkt.

Tabel 7: mening van shippers over mate van transparantie op de gasmarkt
2.3.3 Marktuitkomsten

De gasmarkt kent van oudsher een koppeling met de oliemarkt. Prijzen in bilaterale gascontracten zijn voor een belangrijk deel geïndexeerd op olieprijzen. Bij het ontbreken van een handelsplaats waar de prijs tot stand komt op grond van vraag en aanbod werd de olieprijs als referentie gehanteerd. Gashubs nemen inmiddels een toenemend deel van het handelsvolume voor hun rekening. Een graadmeter voor de marktwerking derhalve is of de prijzen op de gashubs in toenemende mate vraag- en aanbodfactoren op de gasmarkt reflecteren of nog altijd de olieprijs blijven volgen.

De afgelopen drie jaren geeft een wisselend beeld voor de hoogte van de TTF prijzen te zien. De gemiddelde TTF prijs voor dagvooruit gas van € 25 MWh in 2008 ligt meer dan 10 euro hoger vergeleken met het voorgaande jaar.

Figuur 15: TTF prijzen (frequentie diagram)

In de volgende grafiek zijn de gasprijs, de prijs voor ruwe olie en de load op het Nederlandse hogedruknet over de periode 2006-2008 weergegeven. Op het eerste gezicht lijkt de gasprijs de olieprijs redelijk te volgen. De pieken in de olieprijs van 2008 zijn echter beperkt terug te zien bij de gasprijs. Deze hoge olieprijzen deden zich voor in de zomer, een periode waarin de vraag naar gas het laagst is.
Mogelijk worden de vraag- en aanbodfactoren op de gasmarkt zelf belangrijker. De marktstructuur is hier een van de relevante variabelen. In het aanbod van gas is de grootste speler een deel van de tijd onmisbaar (zie analyse van residual supply). De vraag is nu of deze onmisbaarheid doorwerkt in de marktuitkomsten. De samenhang tussen de residual supply index (laagste RSI op dagbasis) en TTF prijzen wordt in de volgende figuur weergegeven.

Figuur 17: relatie tussen marktstructuur (RSI) en marktuitkomsten (TTF prijs)
Vergeleken met eerdere jaren bewegen TTF prijzen zich binnen een beperkte bandbreedte in 2008 maar liggen op een hoger niveau (zie ook frequentie diagram). Voor 2006 en 2007 is in de figuur zichtbaar dat hoge TTF prijzen zich voordoen bij een lage RSI, bij 2008 is het lastig een algemene tendens te herkennen. Bij de uitschieters in TTF prijzen is het aannemelijk dat ook de krapte in de markt een rol heeft gespeeld. Om meer te zeggen over de relatie tussen marktstructuur en marktuitkomsten hebben wij een econometrische analyse verricht over de periode 2006-2008 met meer verklarende variabelen (zie onderstaande box). Deze analyse toetst de (richting van de) causaliteit.

Box: invloed van marktstructuur op marktuitkomsten

In de regressie analyse is de TTF dagvooruit prijs (te verklaren variabele) gerelateerd aan RSI, schaarste index, temperatuur, gasolieprijs en kolenprijs (verklarende variabelen).\(^6\)

| TTF | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------|-------|-----------|-------|-------|---------------------|
| RSI | -2,634| 0,300 | -8,770| 0 | -3,22 2 -2,045 |
| schaarste | 2,295 | 0,196 | 11,730| 0 | 1,730 2,678 |
| temperatuur | -0,188| 0,011 | -17,740| 0 | -0,209 -0,167 |
| gasolieprijs | 0,035 | 0,001 | 60,690| 0 | 0,034 0,036 |
| kolenprijs | 0,073 | 0,017 | 4,260 | 0 | 0,039 0,106 |
| cons | 1,500 | 0,497 | 3,020 | 0,003 | 0,527 2,473 |

De uitkomsten laten zien dat bij alle variabelen de tekens (kolom coëfficiënt) zijn zoals deze verwacht mogen worden. Zo betekent een hogere olieprijs een hogere gasprijs en een hogere temperatuur een lagere gasprijs. Bovendien zijn alle gevonden verbanden significant (absolute t-waarde groter dan twee). Onze bijzondere aandacht gaat uit naar de invloed van de marktstructuur op de gasprijs. De uitkomst is een negatieve coëfficiënt voor de RSI en het gevonden verband is significant. Het effect van onmisbaarheid op de gasprijs is daarnaast ongeveer van dezelfde orde van grootte als het effect van schaarste.

Volgens deze analyse is de mate van onmisbaarheid van invloed op de hoogte van de gasprijs. Gelet op de hoge mate van correlatie tussen TTF prijzen en prijzen van naburige gashubs (BEB, EGT, Zeebrugge en NBP) is dit resultaat des te opvallender.

2.3.4 Conclusie

De gasmarkt is een zeer geconcentreerde markt. Onmisbaarheid van de grootste marktspeler lijkt een gegeven te zijn. In 2008 was dit meer dan 60% van de tijd het geval. Toetredingsbelemmeringen houden een geconcentreerde marktstructuur in stand. Shippers zien toegang tot opslagcapaciteit en flexibiliteit als belangrijk knelpunt op de gasmarkt. Er is te weinig opslagcapaciteit en flexibiliteit voor de markt beschikbaar en de informatie over beschikbare capaciteit en prijzen is onteijkend. Dit maakt het lastig een actievere rol op de markt te spelen. Ook het gegeven dat kwaliteit en tijdigheid van de stuurinformatie onvoldoende is

\(^6\) De RSI is gedefinieerd als (totale capaciteit – capaciteit grootste speler)/ totale load. De schaarste index is gedefinieerd als inverse van (totale capaciteit – totale load)/ totale capaciteit.

{}

Energiekamer

- 30 / 67 -

november 2009
speelt hier mee. Tegelijkertijd lijken vraag/aanbod factoren op de gasmarkt en daarmee ook de marktstructuur meer bepalend te worden voor de marktuitkomsten. De gasprijs volgt niet langer als vanzelfsprekend de pieken en dalen van de olieprijs. Hoge prijzen als gevolg van krapte in de markt zijn dan een uiting van marktwerking. Onmisbaarheid blijkt echter ook op zichzelf van invloed te zijn op de marktuitkomsten.

2.4 Handelsplaatsen

2.4.1 Inleiding

Een liquide gashub stelt shippers in staat een eigen koers te varen. Dit vereist een breed aanbod van producten en diensten met verschillende looptijden op de gashub. Blokken gas van verschillende duur (jaar, maand, ...) zijn nodig om een ruw profiel op te bouwen. Mochten afnameprognoses wijzigen dan kan alsnog gas bijgekocht of verkocht worden. Om het aanbod nauwkeuriger af te stemmen op de werkelijke gasafname is het aanbod van korte termijn producten day-ahead en within-day op TTF cruciaal.

In het hoofdstuk handelsplaatsen kijken we naar de ontwikkeling van de liquiditeit op TTF. Allereerst komen verhandelde en geleverde volumes op TTF aan bod. Vervolgens kijken we naar liquiditeitsindicatoren volatiliteit, spreiding, resilience en diepte. Tevens maken we een vergelijking met omringende hubs als NBP en Zeebrugge.

2.4.2 TTF volumes

In deze paragraaf laten we de ontwikkeling van totale volumes zien die verhandeld en geleverd worden op TTF. Vervolgens kijken we naar de verdeling van deze volumes over gaskwaliteit (H of L-gas), tijdsdimensie (producten voor lange of korte termijn) en handelsplaats (beurs, OTC of bilateraal).

Figuur 18: verhandelde en geleverde volumes op TTF (maandtotalen)

Deze 18% betreft het geleverd volume op TTF gedeeld door de totale afname (binnenlands en grenspunten). Indien je TTF volume uitdrukt in binnenlandse afname komt het aandeel op 41%. Dit beeld is enigszins vertekend omdat geleverd gas op TTF ook wordt geëxporteerd. Een verbijzondering naar kleinverbruikers geeft dan meer inzicht. Het aandeel van TTF op de kleinverbruikersmarkt (laagcalorisch) bedraagt 9%.
Volumen op zich zeggen niet alles. Het is onmiskenbaar een goede ontwikkeling dat er beduidend meer gas op TTF aanwezig is. Hoe dit gas terugkomt in het productaanbod op TTF is minstens zo belangrijk. Het gaat daarbij om de gaskwaliteit en de tijdsdimensie. Shippers hebben laagcalorisch gas nodig om het kleinverbruikerssegment te beleveren. Daarnaast dient het gas in verschillende looptijden beschikbaar te zijn om de benodigde flexibiliteit te verkrijgen.

Figuur 20: TTF volumes (geleverd) ondervandeel naar H-gas en L-gas

![Diagram TTF volumes (geleverd)](image1)

Figuur 21: TTF volumes (verhandeld) ondervandeel naar within-day, prompt en curve

![Diagram TTF volumes (verhandeld)](image2)
In 2008 is de hoeveelheid geleverd L-gas op TTF duidelijk toegenomen. Gezien de afwezigheid van L-gas op TTF in 2006 en beperkte volume in 2007 is dit ook gewenst. Maar in deze hoeveelheden is slechts een klein deel van de kleinverbruikers van gas te voorzien. Dat de capaciteitsrestrictie op kwaliteitsconversie minder knellend is, betekent niet dat al het H-gas nu probleemloos is om te zetten. Het is zelfs twijfelachtig of überhaupt met TTF gas aan kleinverbruikers geleverd kan worden omdat het aandeel van korte termijn producten gering blijft. Voor shippers is het lastig zo niet onmogelijk om met TTF gas het gewenste profiel samen te stellen.

Hoewel er nog veel te verbeteren valt in het aanbod van laagcalorisch gas en korte termijn producten op TTF is het een gunstig teken dat shippers verhoudingsgewijs meer transacties via de gasbeurs en minder langs bilaterale weg laten lopen. Gezien de nog beperkte omvang is dit echter niet meer dan een goed begin.

Figuur 22: TTF volumes (verhandeld) onderverdeeld naar beurzen, OTC markt en bilaterale contracten

2.4.3 Liquiditeit op TTF

De ontwikkeling van liquiditeit op TTF is niet alleen aan het volume af te lezen. Relevante indicatoren voor liquiditeit zijn volatiliteit van de prijzen en spreiding tussen bied- en laatprijzen. Volatiliteit is een maat om prijsfluctuaties uit te drukken. In het algemeen geldt: hoe groter de volatiliteit, hoe groter de onzekerheid die de prijs omgeeft. De bied-laatspreiding geeft een indicatie van de hoogte van transactiekosten. Hoe lager de bied-laatspreiding, hoe makkelijker het is om tot een transactie te komen. Daarnaast is in de shippersenquete gevraagd naar het aantal standaard 'lots' dat verhandeld kan worden zonder de prijs te beïnvloeden en ook hoeven vooruit (dagen, maanden, jaren) shippers in producten handelen. Deze liquiditeitsindicatoren staan respectievelijk bekend als resilience en diepte van de markt.

8 Onder prompt wordt verstaan day ahead, weekend, balance of the week, working week + 1 en balance of the month. Tot curve producten behoren months, quarters, summer/winter, year(s) ahead.
Volatiliteit en spreiding

Figuur 23: volatiliteit van prijzen op TTF (maandcontracten)

Tabel 11: volatiliteit van prijzen op TTF voor dag, maand, jaarcontracten (% jaargemiddelden)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag vooruit</td>
<td>5.1</td>
<td>4.4</td>
<td>3</td>
</tr>
<tr>
<td>Maand vooruit</td>
<td>1.8</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Jaar vooruit</td>
<td>0.8</td>
<td>1.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Voor dagvooruit contracten ontwikkelde de volatiliteit zich nu drie jaren achtereenvolgens in gunstige richting. Voor maandcontracten ligt deze ondanks een verbetering ten opzichte van vorig jaar op het niveau van 2006. Bij jaarcontracten is zichtbaar dat de volatiliteit in de loop der jaren licht oploopt.
Figuur 24: bied-laat spreiding op TTF (maandcontracten)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag vooruit</td>
<td>2.3</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Maand vooruit</td>
<td>0.8</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Jaar vooruit</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

De spreiding tussen bied- en laatprijzen ligt in 2008 voor dag-, maand- en jaarcontracten op een lager niveau dan voorheen. Evenals bij de volatiliteit is de ontwikkeling van bied-laatspreiding het meest gunstig bij dagvooruit contracten. De verslechtering die zich in 2007 aftekende op maand- en jaarcontracten is omgebogen.
Resilience en de diepte van de markt

Figuur 25: resilience op TTF

De resilience is voor bijna alle contracten op TTF toegenomen. Shippers is gevraagd naar het aantal standaard ‘lots’ van 30 MW dat ze kunnen verhandelen zonder de prijs te beïnvloeden. De grote toename van resilience bij de dagvooruit contracten is wederom een indicatie van een meer liquide dagvooruit markt op TTF.

Figuur 26: de diepte van de markt op TTF

De diepte van de markt op TTF is voor maand- en kwartaalcontracten duidelijk afgenomen. Shippers prefereren blijkbaar contracten korter voor het leveringsmoment aan te gaan. Onzekerheid over de prijsontwikkeling is hier een mogelijke verklaring.
Uit een vergelijking met de gashubs in omringende landen blijkt dat de volatiliteit en bied-laatspreiding op TTF in 2008 min of meer vergelijkbaar zijn, met uitzondering van de spreiding in Duitsland.

Figuur 27: internationale vergelijking volatiliteit prijzen (maandcontracten)

Figuur 28: internationale vergelijking bied-laat spreiding (maandcontracten)
2.4.4 Conclusie
Verhandelde en geleverde volumes op TTF zijn in 2008 substantieel toegenomen. Dit is een belangrijke opsteker voor de gasmarkt. Het gas wordt ook in toenemende mate op APX en ENDEX verhandeld wat op meer vertrouwen in de prijsvorming op gasbeurzen duidt. Het aandeel van laagcalorisch gas blijft echter beperkt en in het aanbod van within day producten tekent zich nauwelijks verbetering af. Dit impliceert dat voor het industriesegment (H-gas) TTF reële mogelijkheden tot sourcing biedt, maar voor het kleinverbruikerssegment het TTF nog geen alternatief is. Wel is zichtbaar dat TTF zich ontwikkeld tot een meer liquide gashub. Met name bij dagvooruit contracten duiden de indicatoren van liquiditeit (volatiliteit, bied-laat spreiding en resilience) op een gunstige ontwikkeling.

2.5 Tot slot
Marktwerking op de groothandelsmarkt gas wordt in belangrijke mate gefrustreerd door de beperkte toegang tot flexibiliteit. Een klein gedeelte van de ondergrondse gasopslagen voor seizoensflexibiliteit is opengesteld voor derden en korte termijn flexibiliteit, met name within-day, is nauwelijks op handelsplaats TTF te krijgen. Dit maakt het voor leveranciers lastig zo niet onmogelijk eigenhandig een verbruikspatroon samen te stellen. Deze leveranciers zal het dan ook niet lukken zich op grond van inkoopstrategie te onderscheiden van concurrenten op de retailmarkt. Het nieuwe marktmodel verandert hier vermoedelijk weinig aan. Leveranciers die zelf beschikken over gasopslag krijgen weliswaar meer mogelijkheden voor portfolio optimalisatie. Maar vanuit het nieuwe balanceringsregime wordt tevens een beroep gedaan deze flexibiliteit in te bieden op de biedladder. Een complicerende factor is de relatief beperkte capaciteit van Nederlandse gasopslagen. Door de swingproductie van het Groningenveld waren prikkels om te investeren in ondergrondse opslag eigenlijk afwezig. Daarom is marktwerking op de Nederlandse gasmarkt gebaat bij het beschikbaar komen van meer flexibiliteit op handelsplaats TTF. Gasterra als exclusieve vermarkter van het Groningengas heeft een spilfunctie in de gewenste transitie naar meer marktwerking.
3 Elektriciteit

3.1 Inleiding

Evenals bij gas is een goedwerkende groothandelsmarkt voor elektriciteit een must om leveranciers op de retailmarkt met elkaar te laten concurreren om de gunst van de consument.

Kenmerkend voor de elektriciteitsmarkt is dat consumptie en productie op elk moment in evenwicht moeten zijn. Elektriciteit kent in tegenstelling tot gas geen buffercapaciteit op het netwerk en er bestaan nog geen mogelijkheden voor grootschalige opslag van elektriciteit. Temperatuur speelt daarentegen een kleine rol bij de elektriciteitsvraag waardoor dagen en seizoens beperkt verschillen. Net als bij gas is evenwel sprake van een duidelijk dagpatroon in de afname van elektriciteit. De vraag naar elektriciteit verschilt van uur tot uur en de productie van elektriciteitscentrales daarmee dus ook.

Hoe ziet een goedwerkende groothandelsmarkt voor elektriciteit eruit? Omdat productie gelijk moet zijn aan consumptie is het belangrijk dat leveranciers in staat zijn van uur tot uur de vraag naar elektriciteit te bedienen. Dit verbruiksprofiel kunnen leveranciers opbouwen met blokken elektriciteit van verschillende tijdsduur. Leveranciers kopen deze blokken elektriciteit in bij meerdere kanalen. Dit kan rechtstreeks van de producent zijn, via tussenkomst van een makelaar of op de elektriciteitsbeurs. Ook kunnen spelers transportcapaciteit op de grenzen voor lange of korte tijd reserveren om stroom uit het buitenland te importeren. Toegang tot transportcapaciteit en liquide handelsplaatsen zijn daarmee essentiële bestanddelen van de groothandelsmarkt elektriciteit. Met slim inkopen op (internationale) handelsplaatsen moeten leveranciers een concurrerend aanbod richting eindverbruikers kunnen doen.

In de praktijk hebben leveranciers goede mogelijkheden om de benodigde blokken elektriciteit te verkrijgen. Voor termijncontracten kunnen leveranciers naast bilaterale overeenkomsten of OTC (over the counter) ook op de termijnbeurs ENDEX terecht. Tevens is er op de grensoverschrijdende verbindingen een veiligheid van capaciteit op jaar- en maandbasis. Gezien de van uur tot uur wijzigende vraag naar stroom is ook de korte termijn uiterst relevant. Leveranciers kunnen hiervoor terecht op de APX dagvooruit markt waar voor elk uur van de volgende dag elektriciteit verhandeld wordt. Ook op de grenzen wordt capaciteit voor de volgende dag op uurbasis gevuld. Vergeleken met de gasmarkt waar vooral in termijnproducten wordt gehandeld en grenscapaciteit op first come first serve basis wordt toegekend, is de groothandelsmarkt elektriciteit een stuk verder ontwikkeld. De elektriciteitsmarkt wordt echter gedomineerd door enkele grote producenten die veelal vertikaal geïntegreerd zijn met (grote) leveranciers. Voor leveranciers met weinig of geen productiecapaciteit is het daarom van groot belang dat ze de prijsvorming op de groothandelsmarkt kunnen vertrouwen. Anders zullen deze leveranciers er niet in slagen zich te onderscheiden van hun concurrenten op de retailmarkt.

Om tot een goedwerkende groothandelsmarkt voor elektriciteit te komen zijn daarom toegang tot infrastructuur, gezonde concurrentie en liquide handelsplaatsen cruciaal. De marktmonitor meet de mate van vooruitgang op deze aspecten en identificeert eventuele knelpunten die verdere ontwikkeling in de weg staan.
3.2 Infrastructuur

3.2.1 Inleiding

Grensoverschrijdende handel in stroom heeft een gunstige invloed op de marktwerking van de Nederlandse groothandelmarkt elektriciteit. Tijdens piekuren kan krapte op de Nederlandse markt tot opwaartse prijsdruk leiden. Het importeren van goedkope stroom uit het buitenland werkt dan disciplinerend op de Nederlandse groothandelmarkt. Grensoverschrijdende handel kan bovendien leiden tot een efficiëntere elektriciteitsopwekking wanneer de opwekkingskosten (op een bepaald moment) van land tot land verschillen.

Deze paragraaf kijkt naar de benutting van de interconnectie capaciteit (import en export) met achtereenvolgens België, Duitsland en Noorwegen.

3.2.2 Interconnectiecapaciteit

Nederland heeft landsgrensoverschrijdende verbindingen met België, Duitsland en Noorwegen. TenneT stelt op de grens met België 1 400 MW, op de grens met Duitsland 2 500 MW en op de grens met Noorwegen 700 MW capaciteit beschikbaar aan de markt. Entso-E rapporteert voor deze grenzen een NTC (net transfer capacity) van 2300 MW met België, 4000 MW met Duitsland en 700 MW met Noorwegen. Het is onduidelijk waarom op de Nederlandse grenzen aanmerkelijk minder capaciteit daadwerkelijk beschikbaar is.

Het gebruik van deze interconnectoren laten we zien met figuren waarin de beschikbare (available), toegekende (obtained) en genomineerde (nominated) capaciteit weergegeven is. Hoe intensief een interconnector wordt gebruikt lezen we af aan de indicator benuttingsgraad. Indien op enig uur de nominaties gelijk zijn aan de beschikbare capaciteit spreken we van volledige benutting.

Grensoverschrijdende handel is efficiënt als relatieve prijzen de stroomrichting van elektriciteit bepalen en de beschikbare capaciteit volledig gebruikt wordt bij prijverschillen tussen landen. Dus als stroom op een buitenlandse elektriciteitsbeurs tegen een lagere prijs wordt verhandeld dan is het wenselijk dat de volledige capaciteit gebruikt wordt om goedkope stroom te importeren. In hoeverre sprake is van optimale benutting van interconnectiecapaciteit laten we zien aan de hand van een figuur waarin voor ieder uur de benuttingsgraad is afgezet tegen het prijverschil op de beurzen.

Elektriciteitsprijzen in Nederland, België en Duitsland volgen elkaar redelijk maar kunnen ook behoorlijk van elkaar verschillen. Het algemene beeld van 2008 is dat beursprijzen in Nederland lager liggen dan België, maar hoger dan Duitsland. De prijs van elektriciteit in Noorwegen ligt evident lager dan in Nederland.
In het vervolg van deze paragraaf komen de benutting van de importcapaciteit en exportcapaciteit van achtereenvolgens België, Duitsland en Noorwegen aan bod.

België

Figuur 30: benutting importcapaciteit België (daggemiddelde MWh)
De interconnectiecapaciteit met België is in 2008 minder intensief voor import en meer intensief voor export gebruikt. Elektriciteit werd in 2008 op de APX veelal tegen een lagere prijs verhandeld dan op de Belgische beurs Belpex. De fysieke congestie op importcapaciteit is daardoor nu minder knellend (van 22 naar 6 procent van de uren). In 2008 is de exportcapaciteit zelfs vaker volledig benut dan de importcapaciteit.

De trilaterale marktkoppeling met België en Frankrijk zorgt voor een optimale dagvooruit handel op de grenzen. Omdat de handelssystemen van APX, Belpex en Powernext op elkaar zijn aangesloten stroomt de elektriciteit altijd in de juiste richting. Zolang er nog vrije grenscapaciteit is zijn de beursprijzen identiek. APX, Belpex en Powernext prijzen zullen van elkaar gaan verschillen op het moment dat de grenscapaciteit een restrictie vormt voor de uitwisseling van stroom (d.w.z. volledige benutting). Onderstaande figuur waarin de benuttingsgraad is afgezet tegen het prijsverschil laat zien dat op die uren toch nog genomineerd wordt op jaar en maandcapaciteit in de tegengestelde richting. Met de invoering van netting in september 2008 komt deze ruimte extra beschikbaar voor de dagvooruit handel. Bij prijsverschillen tussen APX en Belpex wordt vanaf dat moment de volledige grenscapaciteit benut in de juiste richting.
Figuur 32: benuttingsgraad interconnectie NL-BE gerelateerd aan prijsverschil APX-Belpex, 2008

Figuur 33: benutting importcapaciteit Duitsland (daggemiddelde MWh)

Tabel 15: benuttingsgraad en volledige benutting (% uren) importcapaciteit Duitsland

<table>
<thead>
<tr>
<th>Import uit Duitsland</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benuttingsgraad</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>Volledige benutting</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
De benutting van de grenscapaciteit met Duitsland is vergelijkbaar met vorig jaar. De benuttingsgraad voor zowel import- als exportcapaciteit is nagenoeg gelijk gebleven. De fysische congestie op de importcapaciteit is met 12% van de uren in 2008 enigszins toegenomen. De invoering van netting op de grens met Duitsland in september 2008 laat zich terugzien in de extra boeking van exportcapaciteit. Sinds december 2008 is het ook mogelijk intra-day capaciteit op de grens met Duitsland te verkrijgen. Hierdoor hebben spelers de mogelijkheid in te spelen op wijzigende (markt) omstandigheden op de dag van uitvoering.

Dagvooruit capaciteit wordt op de grens met Duitsland nog expliciet geveild. De invoering van marktkoppeling is nu gepland op voorjaar 2010. Tot die tijd dienen spelers de commodity en de capaciteit afzonderlijk in te kopen. Bij het afstemmen doet zich de complicatie voor dat de veiling voor dagvooruit capaciteit sluit voordat de beursprijzen bekend worden. Onderstaande figuur laat zien dat de benutting van de interconnectiecapaciteit met Duitsland dan ook niet optimaal is. Bij hogere APX-prijzen wordt de importcapaciteit vaak niet volledig benut en bij lagere APX-prijzen komt het voor dat Nederland elektriciteit blijft importeren.
Figuur 35: benuttingsgraad interconnectie NL-DU gerelateerd aan prijverschil APX-EEX, 2008

Figuur 36: benutting importcapaciteit Noorwegen (daggemiddelde MWh)

Tabel 17: benuttingsgraad en volledige benutting (% uren) importcapaciteit Noorwegen

<table>
<thead>
<tr>
<th>Import uit Noorwegen</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benuttingsgraad</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Volledige benutting</td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>
De NorNed kabel tussen Nederland en Noorwegen is mei 2008 in gebruik genomen. Op deze verbinding wordt dagvooruit capaciteit expliciet geveild. De figuren laten zien dat de kabel vooral wordt gebruikt om stroom uit Noorwegen te importeren. Dat deze verbinding gewenst was blijkt duidelijk uit de benutting. De benuttingsgraad van de beschikbare importcapaciteit komt uit op 97%, voor de exportcapaciteit op 75%. Deze cijfers zijn berekend op de werkelijk beschikbare capaciteit. Ramp constraints opgelegd door de Noorse TSO uit overwegingen rondom systeemintegriteit zorgen ervoor dat de 700 MW van de NorNed kabel niet altijd beschikbaar is. Ramp gebeurt in twee stappen (van 0 naar 300MW en van 300 naar 700MW en terug) waardoor het ook niet mogelijk is de flow richting ineens om te draaien.

Van begin af aan was het de bedoeling op de NorNed kabel marktkoppeling tussen Nederland en Noorwegen te realiseren. Door enkele obstakels waaronder afwijkende gate closure times op de APX en NordPool is het er nog niet van gekomen. Hoewel de beschikbare capaciteit van de NorNed kabel goed gebruikt wordt, illustreert onderstaande figuur dat er geen sprake is van optimale benutting. Gelet op de elektriciteitsprijzen aan beide eindes van de kabel stroomt de elektriciteit regelmatig in tegengestelde richting. Eerdergenoemde ramp constraints zijn hier mede oorzaak van. Van marktkoppeling mag in ieder geval verwacht worden dat de capaciteit niet langer volledig in tegengestelde richting zal worden gebruikt.
De mate waarin grensoverschrijdende handel efficiënt is meten we af aan het gebruik van de capaciteit bij prijsverschillen tussen landen. Hoe groter het prijsverschil, hoe wenselijker optimaal capaciteitsgebruik. Daarbij gaat het zowel om de stroomrichting van elektriciteit als om de benuttingsgraad van capaciteit. Met de indicator \textit{cross-border efficiency}\footnote{Deze indicator bedraagt maximaal 1. Het gunstige deel van de grensoverschrijdende handel (prijsverschil vermenigvuldigd met gebruikte capaciteit) wordt gedeeld op het totaal (incl. de niet gebruikte capaciteit bij een gunstig prijsverschil en capaciteit gebruikt in de verkeerde richting).} meten we de efficiëntie van grensoverschrijdende handel. Voor de verbindingen tussen België en Nederland ligt deze dicht bij de 1. Marktkoppeling is voor deze hoge score verantwoordelijk. Omdat marktkoppeling nog niet gerealiseerd is tussen Duitsland en Nederland is de \textit{cross-border efficiency} voor deze grensverbindingen een stuk lager. Op de verbinding tussen Noorwegen en Nederland is de capaciteit bijna altijd volledig benut waardoor de grensoverschrijdende handel in hoge mate efficiënt is.

\begin{table}[h]
\centering
\caption{Efficiëntie grensoverschrijdende handel Nederland met omringende landen}
\begin{tabular}{|l|c|c|}
\hline
\textbf{Cross-border efficiency} & 2007 & 2008 \\
\hline
België – Nederland & 0,97 & 0,96 \\
Duitsland – Nederland & 0,53 & 0,54 \\
Noorwegen – Nederland & & 0,94 \\
\hline
\end{tabular}
\end{table}
Box: marktintegratie

Fysieke verbindingen met het buitenland zorgen ervoor dat de elektriciteitsmarkt van Nederland in meer of mindere mate integreert met die van de omringende landen. Een logische vraag derhalve: in hoeverre is nu sprake van marktintegratie?

Figuur 29 liet al zien dat prijzen van Nederland, België en Duitsland elkaar redelijk volgen maar in sommige perioden ook behoorlijk van elkaar verschillen. Het prijsniveau in Noorwegen ligt doorgaans lager dan dat van de andere landen. Met gebruikmaking van een *principal component analyse* (PCA) kunnen we vaststellen welk deel van de bewegingen in prijzen gedreven wordt door een gemeenschappelijk prijspatroon. Deze analyse hebben we uitgevoerd voor de regio die Nederland, Frankrijk en Duitsland omvat. We vinden dat dit gemeenschappelijk prijspatroon 82% van de prijsbewegingen verklaard. Als we ook Noorwegen in deze analyse betrekken bedraagt deze *principal component* 70%.

Tabel 20: gemeenschappelijk prijspatroon (PCA) Nederland en omringende landen

<table>
<thead>
<tr>
<th>Gemeenschappelijk prijspatroon</th>
<th>NL, FR, DU regio</th>
<th>NL, NO, DU, FR regio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle uren</td>
<td>0,82</td>
<td>0,70</td>
</tr>
<tr>
<td>Piekuren</td>
<td>0,79</td>
<td>0,68</td>
</tr>
<tr>
<td>Niet-piekuren</td>
<td>0,88</td>
<td>0,78</td>
</tr>
</tbody>
</table>

Deze analyse is ook uit te voeren voor meerdere opeenvolgende periodes. Dit maakt het mogelijk te kijken naar de impact van maatregelen die beogen de marktintegratie te bevorderen. Bijvoorbeeld de introductie van trilaterale marktkoppeling (21 november 2006) of de ingebruikname van de Nor Ned kabel (6 mei 2008). Onderstaande tabellen geven de resultaten van deze analyse.

Tabel 21: impact invoering trilaterale marktkoppeling (NL, FR, DU regio) volgens PCA

<table>
<thead>
<tr>
<th>Invoering marktkoppeling</th>
<th>1-1-2004 tot 21-11-2006</th>
<th>21-11-2006 tot 11-6-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle uren</td>
<td>0,72</td>
<td>0,83</td>
</tr>
<tr>
<td>Piekuren</td>
<td>0,78</td>
<td>0,79</td>
</tr>
<tr>
<td>Niet-piekuren</td>
<td>0,86</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tabel 22: impact ingebruikname NorNed kabel (NL, NO, DU, FR regio) volgens PCA

<table>
<thead>
<tr>
<th>Ingebruikname NorNed</th>
<th>1-1-2006 tot 6-5-2008</th>
<th>6-5-2008 tot 11-6-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle uren</td>
<td>0,62</td>
<td>0,77</td>
</tr>
<tr>
<td>Piekuren</td>
<td>0,59</td>
<td>0,76</td>
</tr>
<tr>
<td>Niet-piekuren</td>
<td>0,68</td>
<td>0,77</td>
</tr>
</tbody>
</table>

De *principal component* analyse wijst uit dat trilaterale marktkoppeling en de NorNed kabel hebben bijgedragen aan verdere marktintegratie. Dit effect mag ook zonder meer verwacht worden. PCA laat daarnaast zien dat de bijdrage van NorNed aan marktintegratie binnen die specifieke regio groter is dan bij trilaterale marktkoppeling.
3.2.3 Conclusie

Transportcapaciteit op de grenzen wordt op verschillende wijzen toegekend. Afhankelijk van de wijze van vellen is in meer of mindere mate sprake van efficiënte grensoverschrijdende handel. Op de grens met Duitsland en Noorwegen is er een (expliciete) veiling van dagvooruit capaciteit en op de grens met België (en Frankrijk) wordt door marktkoppeling dagvooruit capaciteit impliciet geveild op de elektriciteitsbeurs. Marktkoppeling betekent optimale benutting van dagvooruit capaciteit. Met de introductie van netting in 2008 komt meer capaciteit beschikbaar voor dagvooruit waardoor de verbindingen met België nog beter benut worden. Op de grensverbindingen met Duitsland en Noorwegen is duidelijk nog geen sprake van optimale benutting. Bij (grote) prijsverschillen wordt de capaciteit niet volledig gebruikt en elektriciteit stroomt regelmatig in de verkeerde richting. Marktkoppeling met Duitsland en Noorwegen zal een grote stap voorwaarts betekenen. Daarnaast blijft het opmerkelijk dat TenneT rond de 4600 MW totaal aan capaciteit beschikbaar stelt, terwijl Entso-E deze op 7000 MW berekend voor de Nederlandse grensverbindingen.

3.3 Mededinging

3.3.1 Inleiding

De gevraagde hoeveelheid elektriciteit verandert van uur tot uur en is relatief prijs inelasch. Bij het aanbod van elektriciteit is de oplopende merit order (industrie kosten curve) kenmerkend. Daarmee zijn de marginale kosten van elektriciteitsproductie, en in een competitieve markt ook de prijs, hoger bij een grotere vraag. Bij de mate van prijsverhoging speelt het verloop van de merit order een rol maar ook de marktstructuur is mogelijk een relevante factor. Concentratie aan de aanbodzijde kan individuele producenten gedurende piekuren onmisbaar maken. Het gevolg is extra opwaartse prijsdruk wat een ongunstig effect heeft op de marktuitkomsten. Marktuitkomsten zijn immers minder efficiënt naarmate de prijs verder boven het niveau van marginale productiekosten ligt.

In deze paragraaf kijken we achtereenvolgens naar de marktstructuur en de marktuitkomsten. Bij de marktstructuur komen de concentratie in het aanbod (onmisbaarheid van spelers), de transparantie op de markt en de kostenstructuur van de sector aan bod. Bij de marktuitkomsten berekenen we onder meer de mark-up (verschil tussen prijs en marginale systeemkosten) en analyseren we de relatie tussen mark-up en onmisbaarheid.

3.3.2 Marktstructuur

Concentratie in het aanbod

Bij het beoordelen van de marktstructuur gaat het vooral om de vraag of (bepaalde) spelers in staat zijn om de marktuitkomsten te beïnvloeden. De mogelijkheid om marktmacht uit te oefenen wordt bepaald door de mate waarin deze spelers onmisbaar zijn om de vraag te bedienen. Indicatoren die deze onmisbaarheid meten zijn de pivotal supplier index (PSI) en de residual supply index (RSI).
De PSI geeft aan hoeveel procent van de uren (een deel van) de capaciteit van een elektriciteitsproducent benodigd is om aan de marktvraag te voldoen gegeven de gezamenlijke capaciteit van de andere producenten. In 2008 is in 79% van de piekuren sprake geweest van één of meer pivotal suppliers. Dit percentage ligt weer hoger dan het voorgaande jaar. De toename in de exportvraag is hier in belangrijke mate verantwoordelijk voor. Doordat prijzen in Nederland vaak lager liggen is Nederland meer gaan exporteren richting België en Frankrijk. Hierdoor is de krapte in de markt en daarmee de onmisbaarheid van spelers groter worden. Het aantal onmisbare spelers is in vergelijking met 2007 ongeveer gelijk gebleven.

Figuur 39: aantal onmisbare spelers, piekuren (daggemiddelde)

De RSI geeft de mate waarin marktpartijen onmisbaar zijn weer. Bij een RSI kleiner dan 1 is de betreffende marktpartner pivotal. Hoe verder de RSI waarde beneden de 1, des te meer capaciteit van deze speler benodigd is. Hiermee neemt de mogelijkheid voor deze speler om de marktuitslagen te beïnvloeden toe. Door de laagste waarde van de verschillende RSI waarden per speler te nemen, verkrijgen we de RSI op sectorniveau. Gedurende piekuren ligt de RSI in 2008 gemiddeld op 0,90. Hiermee ligt de RSI lager dan in voorgaande jaren. De mate waarin een of meerdere spelers onmisbaar zijn is tijdens piekuren derhalve toegenomen.

Figuur 40: RSI op sectorniveau, piekuren (frequentie)
Tabel 23: marktstructuur indicatoren PSI (% uren) en RSI sectorniveau, piekuren

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>pivotal supplier index</td>
<td>62%</td>
<td>72%</td>
<td>79%</td>
</tr>
<tr>
<td>residual supply index</td>
<td>0,98</td>
<td>0,94</td>
<td>0,90</td>
</tr>
</tbody>
</table>

Transparantie van de markt

Gebrek aan transparantie op de markt kan een geconcentreerde marktstructuur in stand houden. In de liquiditeiten enquête vragen we handelaren naar hun mening over de informatievoorziening op gebied van productie en vraag, transport en handelsplaatsen.

Het beeld uit de liquiditeiten enquête is dat handelaren in 2008 meer tevreden zijn over de informatievoorziening bij transport (zowel binnenlands als grensoverschrijdend). Op alle onderdelen is volgens handelaren sprake van een toename in transparantie (zie tabel 24). Het meest ontevreden zijn handelaren over de transparantie ten aanzien van productie. Handelaren vinden dat er te weinig informatie (ex-ante) over de beschikbare productiecapaciteit en (ex-post) over de gerealiseerde productie is. Handelaren zijn meer ontevreden geworden over de transparantie op de handelsplaats OTC. Er is volgens handelaren een tekort aan prijsinformatie en ook is niet duidelijk hoeveel partijen in de markt zijn. Een toename in transparantie is derhalve met name gewenst op de terreinen van productie en handel.

Tabel 24: mening van handelaren over mate van transparantie op de elektriciteitsmarkt
Kostenstructuur van de sector

In een competitieve markt wordt het prijsspiegel van elektriciteit in belangrijke mate bepaald door de (marginale) kosten van opwekking. De kosten per geproduceerde MW hangen af van het rendement van de elektriciteitscentrale en de brandstofprijzen. In 2008 liggen de prijzen van gas, kolen en co2 emissierechten (ingang nieuwe periode) hoger dan in voorgaande jaren.

Figuur 41: prijzen van brandstoffen gas, kolen, co2

Deze stijging in productiekosten betekent dat de kostencurve van de sector als geheel hoger komt te liggen. De merit order voor Nederland laat dit ook zien. In de merit order is het Nederlandse productiepark gerangschikt naar niveau van marginale productiekosten. Door de inelastische vraag naar elektriciteit geeft de merit order een indicatie van het competitiieve prijsniveau. Individuele producenten worden daarnaast meer onmisbaar naarmate de vraag dichter tegen de capaciteitsgrenzen zit.

Figuur 42: merit order sector (gemiddeld per jaar)
3.3.3 Marktuitkomsten

De marktuitkomsten in 2008 kenmerken zich door, gemiddeld over alle uren, hogere elektriciteitsprijzen en hogere winsten dan in 2007, bij eveneens hogere prijzen voor gas, kolen en co2 emissierechten.

De gemiddelde APX prijs gedurende piekuren is toegenomen van € 58/MWh in 2007 tot € 89/MWh in 2008. Onderstaande figuur geeft de ontwikkeling van APX prijzen en prijzen van OTC maand en kwartaal vooruit.

Een belangrijke indicator voor mededinging is de mark-up. Deze meet het verschil tussen de APX prijs en de marginale systeemkosten uitgedrukt in % van de marginale systeemkosten. In 2008 is de mark-up gemiddeld tijdens piekuren -9%. Vergeleken met 2007 ligt de gemiddelde mark-up lager. Onderstaande frequentiediagram (figuur 44) laat ook zien dat verschillen in mark-up tussen de uren minder zijn geworden.

De interpretatie van negatieve mark-ups moet gezocht worden bij dynamische beperkingen waardoor de inzet van centrales niet volledig op de dagvooruit APX prijzen wordt afgestemd. Ook de marktomstandigheden op de dag zelf, af te lezen aan de onbalansprijzen, kan de inzet van centrales verklaren die gerelateerd aan APX prijzen minder logisch lijkt. Een berekening van de mark-up met onbalansprijzen geeft een positieve mark-up van bijna 2% gemiddeld tijdens piekuren in 2008.
Box: gedrag van producenten

Een belangrijke indicator voor marktuitkomsten is de mark-up. Deze geeft het verschil tussen de elektriciteitsprijs en de marginale kosten van de duurst draaiende centrale. Als deze centrale ook de marginale centrale is onder optimale dispatch dan volstaat de mark-up analyse. Strategisch gedrag van producenten om de prijs op te drijven kan ook gelegen zijn in een inefficiënte dispatch van centrales. Bij een inefficiënte dispatch schuift de marginale centrale een of meerdere posities door in de merit order waardoor de marginale systeemkosten stijgen. Dit resulteert in een hogere elektriciteitsprijs waardoor de marges op de inframarginale centrales toenemen.

De indicator *dispatch inefficiency* geeft aan hoeveel duurder de productie van een eenheid elektriciteit door de werkelijke marginale centrale is vergeleken met de marginale centrale bij optimale dispatch.

Geconstateerde inefficiënties op portfolioniveau moeten we in het geheel toezchrijven aan ontbrekende informatie over factoren die optimale inzet van centrales bepalen. Immers, we mogen veronderstellen dat spelers hun eigen portfolio zo efficiënt mogelijk zullen gebruiken. Als een speler capaciteit wil achterhouden om zo de marktuitkomsten te beïnvloeden, dan zal dat capaciteit aan de marge zijn, dat wil zeggen de duurste capaciteit die, gegeven de vraag, zou kunnen draaien. Wanneer, in reactie hierop, een andere speler een duurdere centrale gaat aanbieden, dan leidt dat tot hogere marginale kosten op sectorniveau. Voor zover strategisch gedrag tot uiting komt in dispatch inefficiëntie, dan is dat dus op sectorniveau.

| Tabel 25: dispatch inefficiency op sectorniveau en op portfolio niveau, piekuren 2008 |
|---------------------------------|----------------|----------------|----------------|----------------|
| Gemiddelde dispatch inefficiëntie (%) | Standaard fout | 95% betrouwbaarheidsinterval | t-toets¹ |
| Sector 34 | 0,6 | 33,2 | 35,5 | 29 |
| Producent 1 | 10 | 0,2 | 9,9 | 10,7 | 39 |
| Producent 2 | 11 | 0,4 | 10,4 | 11,9 | 34 |
| Producent 3 | 13 | 0,4 | 12,6 | 14,3 | 29 |
| Producent 4 | 2 | 0,4 | 1,3 | 3,1 | 43 |

Bovenstaande tabel vergelijkt de dispatch inefficiëntie op sectorniveau met de dispatch inefficiëntie bij de afzonderlijke portfolio’s. Uit de vergelijking blijkt dat de dispatch inefficiëntie op sectorniveau significant hoger is dan voor de afzonderlijke spelers. Dit kan een teken zijn van strategisch gedrag bij de dispatch van centrales. De oorzaak van hogere dispatch inefficiëntie op sector niveau kan ook bij marktimperfecties op de handelsplaatsen liggen. Contractverplichtingen bij inkoop van brandstof of verkoop van elektriciteit kunnen ertoe leiden dat een speler relatief dure centrales inschakelt terwijl andere spelers goedkopere niet inzetten.
De hoogte van de mark-up blijkt nauw gerelateerd aan de marktstructuur. Onderstaande figuur laat zien dat hoge mark-ups zich bijna uitsluitend voordoen wanneer de RSI onder de 1 komt.

In een econometrische analyse hebben we de mark-up gerelateerd aan meerdere verklarende variabelen. Met deze analyse toetsen we de (richting van de) causaliteit. Naast de RSI is onder meer ook een schaarste index opgenomen. Op deze manier kunnen we achterhalen of hoge mark-ups door krapte in de markt veroorzaakt worden of dat onmisbaarheid op zichzelf ook van invloed is. Deze econometrische analyse (zie box) bevestigt dat onmisbaarheid een relevante factor is voor de hoogte van de mark-up.
Box: invloed van marktstructuur op marktuitkomsten

In de regressie analyse is de mark-up (te verklaren variabele) gerelateerd aan de RSI op sectorniveau, schaarste index, gasprijs, kolenprijs en CO2 prijs (verklarende variabelen).

Tabel 26: resultaten regressie analyse mark-up, 2006-2008

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|------|------|-------------------|
| RSI | -0,386 | 0,007 | -56,4| 0 | -0,399 -0,372 |
| schaarste | 0,855 | 0,011 | 67,41| 0 | 0,083 0,088 |
| gasprijs | -0,012 | 0,001 | -24,17| 0 | -0,013 -0,011 |
| kolenprijs | 0,008 | 0,001 | 6,43 | 0 | 0,006 0,011 |
| CO2 prijs | 0,008 | 0,000 | 19,37| 0 | 0,007 0,009 |
| _cons | -0,153 | 0,016 | -9,67| 0 | -0,184 -0,122 |

Tussen de mark-up enerzijds en de schaarste en onmisbaarheid van spelers anderzijds bestaat een statistisch significant verband. Hoe groter de schaarste in de markt, dat wil zeggen hoe minder onbenutte capaciteit er is, hoe hoger de mark-up. Ondanks het nauwe samenhang tussen schaarste en onmisbaarheid, blijkt de onmisbaarheid van spelers ook nog een zelfstandige invloed op de mark-up te hebben. Hoe groter de onmisbaarheid, dat wil zeggen hoe lager de RSI, hoe hoger de mark-up. Nadere analyse leert dat het effect van RSI ongeveer even groot is als dat van schaarste op de mark-up.

Ondanks de gemiddeld negatieve mark-up voor de marginale centrale is de winstgevendheid van elektriciteitsopwekking positief. Centrales lager in de merit order genereren ruim voldoende inkomsten om de vaste kosten van nieuwe centrales te dekken. Voor alle (grote) spelers geldt dat de jaarwinst per MW het dubbele of meer is van de jaarwinst van een nieuwe centrale. De investeringsplannen in nieuwe productiecapaciteit bevestigen dit beeld. Nieuwbouwplannen bedragen ruim meer dan de helft van het huidige opgestelde vermogen.¹⁰

Figuur 46: dekkingsgraad (verhouding winst tot investeringskosten)

¹⁰ Volgens opgave TenneT(Monitor Leveringszekerheid 2009) tot het jaar 2016 18,5 GW aan nieuw grootschalig thermisch vermogen bij 2,3 GW conservering en uitbedrijf name (per saldo 16,2 GW). Huidig productiepark heeft omvang van 22 GW.
Tabel 27: marktuitkomsten indicatoren mark-up (piekuren) en dekkingsgraad (jaargemiddelden)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark-up</td>
<td>0%</td>
<td>7%</td>
<td>-9%</td>
</tr>
<tr>
<td>Dekkingsgraad</td>
<td>2.8</td>
<td>2.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

3.3.4 Conclusie

Indicatoren van marktstructuur PSI en RSI duiden op een verslechtering in de structuur van de groothandelsmarkt elektriciteit. Individuele producenten zijn vaker onmisbaar en de mate van onmisbaarheid is toegenomen. Deze ontwikkeling komt voor een belangrijk deel op het conto van de toenomen exportvraag. Daarnaast zijn de kosten van alle brandstoffen (gas, kolen, co2 emissies) gestegen waardoor de industrie kostencurve (merit order) op een hoger niveau komt. Bij een hogere vraag en hogere kosten liggen de elektriciteitsprijzen in 2008 boven die van vorig jaar. De mark-ups zijn daarentegen afgenomen. Dit is mede het gevolg van hogere marginale systeemkosten (of beter gezegd: een stellere merit order) waardoor nog al tijden een positieve dekkingsgraad resteert. De samenhang tussen mark-up en onmisbaarheid is daarmee niet verdwenen. Ook in 2008 is zichtbaar dat naarmate producenten meer onmisbaar zijn de mark-up hoger ligt.

3.4 Handelsplaatsen

3.4.1 Inleiding

Deze paragraaf analyseert de ontwikkeling van de liquiditeit op de verschillende marktplaatsen. In een liquide markt kunnen standaard transacties over het algemeen snel worden uitgevoerd en kan een groot volume per transactie verhandeld worden zonder dat dit een merkbaar effect heeft op de prijs. Liquiditeit minimaliseert de transactiekosten en wekt vertrouwen bij marktpartijen. Dit trekt weer meer partijen aan tot de markt waardoor de liquiditeit verder verbetert.

Een toenemend handelsvolume en afnemende gevoeligheid van de prijs voor extra vraag zijn tekenen van een verbeterde liquiditeit op de elektriciteitsbeurs APX. Minder volatiele prijzen en een lagere spreiding tussen bied- en laaptijden zijn indicaties voor een betere liquiditeit op de OTC markt. In deze paragraaf komen achtereenvolgens handel op de spotmarkt APX en handel in OTC termijncontracten aan bod.

11 Het gemiddelde van de dekkingsgraad per speler. De dekkingsgraad is de verhouding tussen de jaarwinst per MW en de jaarkosten per MW van een investering in een nieuwe centrale. Uitgangspunten hierbij zijn: investeringsbelasting is 1 miljoen Euro, disconteringsvoet van 7% en looptijd van investering is 25 jaar.
3.4.2 Handel op de spotmarkt APX

APX is een marktplaats voor handel in dagvooruit contracten voor elk uur van de volgende dag. Naast de dagvooruit handel is er op de APX ook handel in intra-day contracten mogelijk. Hier wordt nog in beperkte mate gebruik van gemaakt.

Het totaal verhandeld volume op de dagvooruit markt is in 2008 op jaarbasis met meer dan 4 TWh toegenomen tot 24,8 TWh.

![Verhandelde volume op APX (jaartallen)](image_url)

<table>
<thead>
<tr>
<th>Jaar</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhandelde volume (TWh)</td>
<td>19,2</td>
<td>20,7</td>
<td>24,8</td>
</tr>
</tbody>
</table>

Op de dagvooruit beurzen van Duitsland (EEX) en Frankrijk (Powernext) zijn de volumes in 2008 ook verder toegenomen. Gezien de omvang van de nationale elektriciteitsmarkt zijn APX volumes relatief hoog vergeleken met Frankrijk maar blijft volume ontwikkeling achter in vergelijking met Duitsland.
De indicator prijsgevoeligheid maakt inzichtelijk in hoeverre additionele vraag resulteert in prijsstijgingen. Dit gaat, met andere woorden, over het aanbod dat in de markt ligt maar niet is aangesproken. Simulaties van extra vraagbiedingen op de APX dagvooruit markt leveren de volgende uitkomsten op. In 2008 is de gevoeligheid van prijs voor extra vraag verder afgenomen. 50 MW extra vraag zou gemiddeld resulteren in een prijsstijging van 0,5% (was 0,9%) en 500 MW zou gemiddeld een 6,1% hogere prijs opleveren (was 14,3%). Dit geeft een indicatie dat de liquiditeit op APX in 2008 verder is toegenomen.

Figuur 49: prijsgevoeligheid APX bij 50 MW extra vraag
Figuur 50: prijsgoeligheid APX bij 500 MW extra vraag

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MW extra vraag</td>
<td>1,4</td>
<td>0,9</td>
<td>0,5</td>
</tr>
<tr>
<td>500 MW extra vraag</td>
<td>20,9</td>
<td>14,3</td>
<td>6,1</td>
</tr>
</tbody>
</table>

De intra day handel op de APX is nog beperkt. Veelal zullen spelers met eigen centrales of bilaterale contacten de balanspositie op de dag zelf bijsturen indien nodig. Resterende onbalances wordt door TenneT verrekend tegen onbalancesprijzen. Deze prijs komt tot stand via een biedladder waarbij zoveel elektriciteit wordt afgeroepen als nodig is. Onbalancesprijzen liggen doorgaans gemiddeld lager dan APX dagvoorsprijs maar kennen meer en grotere uitschieters op momenten van krapte in de markt. Onderstaande figuur laat zien dat onbalancesprijzen in 2008 op die momenten duidelijk hoger liggen dan APX prijzen in vergelijking met voorgaande jaren.
3.4.3 Handel in OTC termijncontracten

Gestandaardiseerde termijncontracten worden verhandeld op de termijnbeurs ENDEX of op de OTC markt met tussenkomst van brokers.

ENDEX volumes
Na een daling in 2007 is het totaal verhandelde volume op ENDEX in 2008 weer toegenomen. Deze stijging heeft zich met name op de futures exchange voorgedaan waar het volume bijna 50% is toegenomen ten opzichte van 2007.
Tabel 30: verhandeld en gecleard volume op Endex (jaartallen)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhandeld volume (TWh)</td>
<td>32,1</td>
<td>28,0</td>
<td>41,2</td>
</tr>
<tr>
<td>Gecleard volume (TWh)</td>
<td>99,2</td>
<td>73,0</td>
<td>77,5</td>
</tr>
</tbody>
</table>

Volatiliteit en spreiding OTC markt

Relevante indicatoren voor liquiditeit op de OTC markt zijn volatiliteit van de prijzen en spreiding tussen bied- en laat prijzen. Volatiliteit is een maat om prijsschommelingen uit te drukken. In het algemeen geldt: hoe groter de volatiliteit, hoe groter de onzekerheid die de prijs omgeeft. De bied-laat spreiding geeft zicht op de hoogte van de transactiekosten. Hoe lager de bied-laatspreiding, hoe makkelijker het is om tot een transactie te komen.

Figuur 53: volatiliteit prijzen OTC maandcontracten, piekuren

Tabel 31: volatiliteit prijzen OTC maand, kwartaal, jaarcontracten (% jaargemiddelden)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maand vooruit (piek)</td>
<td>2,4</td>
<td>3,3</td>
<td>2,0</td>
</tr>
<tr>
<td>Kwartaal vooruit (piek)</td>
<td>3,1</td>
<td>1,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Jaar vooruit (basis)</td>
<td>0,8</td>
<td>0,7</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Uit de ontwikkeling van de volatiliteit en de bied-laatspreiding over de periode 2006-2008 is geen eenduidig beeld op te maken. Bij volatiliteit is alleen voor kwartaalcontracten jaar op jaar sprake van verbetering, bij bied-laatspreiding is dit alleen bij maandcontracten het geval. Voor andere contracten verslechterd de volatiliteit of bied-laatspreiding weer. Wel duiden deze indicatoren over de gehele breedte in 2008 op een lichte verbetering van de liquiditeit op de Nederlandse OTC markt.
Uit een vergelijking met de OTC markten van Duitsland en Frankrijk blijkt dat de volatiliteit vergelijkbaar is maar dat Nederland een aanmerkelijk hogere spreiding tussen bied en laatprijzen kent. Hoewel deze de laatste jaren afneemt zijn transactiekosten op de Nederlandse OTC markt blijkbaar hoger dan in omringende landen.

Figuur 55: internationale vergelijking volatiliteit prijzen OTC maandcontracten, piekuren

Figuur 56: internationale vergelijking bied-laatspreiding OTC maandcontracten, piekuren
3.4.4 Conclusie

De liquiditeit op elektriciteitsbeurs APX is in 2008 toegenomen. Het volume van de dagvooruit handel is met meer dan 4 TWh gegroeid tot 25 TWh. Ook de afnemende prijsgevoeligheid voor extra vraag duidt op een verbetering in de liquiditeit. 500 MW extra vraag zou resulteren in een prijsstijging van 6,1% (was 14,3%). Op de termijnmarkt is de verbetering in liquiditeit minder evident. Endex volumes zijn na de terugval van vorig jaar weer gestegen waarbij het aandeel van de futures exchange ook is toegenomen. Totale volumes en het futures aandeel zijn in eerdere jaren hoger geweest. Op de broker markt verschilt afhankelijk van de termijn van OTC contracten het beeld. Grosso modo lijkt er sprake te zijn van een lichte verbetering. De bied-laatspreiding blijft in vergelijking met het buitenland echter hoog.

3.5 Tot slot

Knelpunten voor marktwerking op de groothandelsmarkt elektriciteit doen zich voornamelijk voor bij de benutting van infrastructuur en de geconcentreerde marktstructuur. Omdat de aanwezige infrastructuur niet optimaal wordt benut blijft de Nederlandse groothandelsmarkt deels gevrijwaard van concurrentiedruk uit het buitenland. Mede door gestegen exportvraag vanuit België en Frankrijk zijn elektriciteitsproducenten in Nederland vaker onmisbaar in 2008. Ook de mate waarin deze producenten onmisbaarheid zijn is verder toegenomen. Voor leveranciers zonder eigen productiecapaciteit die aangewezen zijn op de groothandelsmarkt voor de inkoop van elektriciteit is dit een ongunstige ontwikkeling. Maatregelen gericht op een betere benutting van de transportcapaciteit op de grenzen verhogen de concurrentiedruk op de Nederlandse groothandelsmarkt. Marktkoppeling met Duitsland en Noorwegen, voorzien voor 2010, betekent dat de beschikbare capaciteit beter benut zal worden. Door het afstemmen van netwerkinvesteringen op regionaal niveau kan daarnaast meer (fysieke) capaciteit beschikbaar komen. Verder zullen de aangekondigde investeringen in nieuwe centrales de onmisbaarheid van individuele producenten verminderen. Het Nederlandse hoogspanningsnet is echter niet berekend op een grootschalige uitbreiding van het productiepark. Gelijktijdig met de noodzakelijke netversterkingen en netuitbreidingen dient TenneT met congestiemanagement nieuwe capaciteit zo snel mogelijk aan te sluiten.